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1 Executive summary

This deliverable documents the digital twin repository module of the iFLEX Framework for phase one. The
digital twin repository consists of models to forecast and simulate consumer’s baseline load, flexibility and
response to flexibility signals. The models in the digital twin repository can be used to evaluate the impact of
individual consumers, as well as, to optimize flexibility management on a consumer level. The modelling
methodologies studied in the work combine advanced machine learning methods with physics-based
modelling and expert knowledge in an innovative way. Moreover, we study novel applications of federated
learning in the context of modelling individual prosumers.

The digital twin repository documented in this deliverable consists of digital twins for an apartment building and
a household. The apartment building’s digital twin is based on a hybrid-modelling approach that combines
machine learning with physics and expert knowledge. The digital twin consists of three types of models: two
machine learning models for electricity and district heating baseline load forecasting, and a simple physics-
based grey-box model for estimating the flexibility of a building’s heating system. Different Artificial Neural
Network architectures and models were implemented, trained and evaluated in order to find an appropriate
model for baseline load forecasting (both electricity and district heating). The heating flexibility model consists
of an indoor temperature model and energy consumption models for space heating, provided by a heat pump
and district heating.

The household digital twin is based on four types of models: a household thermal model, an electricity model,
a flexibility model and an occupant activity model. The initial baseline of the models is explained and presented.
The data used for the modelling is introduced. The models consist partly of neural networks and partly of
gradient boosting based solutions. Potential use and further improvements in next phases of the project are
also provided. In addition, federated learning has been introduced and a simple example of its usage is
presented. Further application of federated approach to the addressed household models will be evaluated
already in the first piloting phase.

This deliverable reports only initial results on the model evaluation. The full evaluation of the models will be
implemented based on the data collected in the first phase pilots and documented in D7.5: Pre-pilot
deployment and validation. This deliverable also documents the initial results of the work that is required for
the pre-pilot. Updates and improvements to the approaches, methods and implementations will be documented
in D3.2: Revised Hybrid-modelling module and D3.3: Final Hybrid-modelling module.
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2 Introduction

2.1 Purpose, context and scope

This deliverable documents the first phase results of task 3.1 - Digital twin of the consumer and task 3.2 -
Hybrid-models for energy system modelling. The role of these tasks is to create a digital twin of a consumer
and his energy systems (i.e., building, HVAC, renewables, appliances, etc.) in order to forecast baseline loads,
flexibility and response of the consumer. For brevity reasons, the terms consumer and prosumer are used for
the whole metering point, including the persons and infrastructure. The digital twins documented in this
deliverable form a digital twin repository that can be used to instantiate models for different situations. In
particular, the digital twins are used for the following main purposes:

 To forecast and evaluate the flexibility impact of the consumer in order to provide individual incentives
and rewards.

 To perform model-based planning and control that adapts to the consumer behaviour and optimizes
flexibility with respect to external prices and incentives.

Two types of consumers are considered in phase one: households and building communities. A household
type consumer is a family comprising of one or more people. A building community consists of several families
that live in an apartment building. The space heating, domestic hot water (DHW), and common electric
consumption (e.g. ventilation, elevators, lighting, Sauna) of the apartment building are paid collectively by the
building community (the costs are typically included in the rent or in the maintenance fees).

2.2 Content and structure

The deliverable is structured as follows:

 Section 3 provides an overview, mapping the contents of the deliverable to the use cases and the
iFLEX architecture.

 Section 4 introduces the main methods and approaches applied in the work.

 Section 5 describes the digital twin repository implementation, as well as details on the approaches
applied in different models of the digital twins.

 Section 6 concludes the deliverable.
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3 Overview

3.1 Relation to use cases

The project has defined a number of use cases in the D2.1 - Use cases and requirements. Some of the use
cases are directly related to the work described in this deliverable and in the task T3.1. The following
requirements were prepared for the first phase of the deliverable, while selection has been influenced by the
goals of the first phase piloting:

 IF-62: Household thermal model, related to the use case PUC-5
 IF-63: Household electricity model, related to use cases HLUC-1, PUC-4, PUC-6, PUC-8, PUC-10
 IF-64: Household flexibility model, related to use cases PUC-8, PUC-4, PUC-5, PUC-6, PUC-10
 IF-65: Household occupant flexibility model, related to use cases PUC-4, PUC-5, PUC-6, PUC-8, PUC-

10
 IF-66: Apartment building district heating model, related to use cases HLUC-3, PUC-8, PUC-10
 IF-67: Apartment building electricity model, related to use cases HLUC- 3, PUC-8, PUC-10
 IF-68: Apartment building flexibility model, related to use cases HLUC-3, PUC-6, PUC-8, PUC-9 and

PUC-10.
The requirements are managed in the project Jira service, as is presented in Figure 1. Within Jira the
requirements are described, prioritised and developed. The current status of the requirements are given in
Appendix 9 of this deliverable.

Figure 1: Digital twin requirements captured in the project Jira
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3.2 Relation to the functional architecture of the iFLEX Framework

Figure 2 highlights the Digital twin repository module, whose initial implementation is documented in this
deliverable. The Digital twin repository module is capable of forecasting and simulating the baseline loads,
flexibility and response of the consumer/prosumer. This functionality is utilized by the Automated flexibility
management module (initial version to be documented in D3.7 - Initial Automated flexibility management
module) for model-based planning and control. The plan for a next version of the iFLEX Framework, is the
provision of advice from the Digital twin repository module to the End-user via the End-user interface.

Figure 2: Functional view of the iFLEX Framework with the Digital twin repository module highlighted.

3.3 First phase focus

The first phase implementation of the Digital twin repository module is targeted for the pre-pilot deployments,
specified in D7.1 - Initial Pilot specifications. The goal in phase one is to develop the initial methods and models
so that we can start evaluating and improving them based on the experiments to be executed in the pre-pilot.

There are two types of digital twins that have been identified for the first phase: building community and
household. For the first phase, the following models were developed for the digital twin of the building
community: electricity baseline model, district heating baseline model, and flexibility model. Relatively standard
Artificial Neural Network models were developed to forecast the baselines. A simple physics-based grey-box
model was developed to model flexibility provided by the building’s space heating (i.e., indoor temperature,
and energy used for space heating).

For the household, the following models have been introduced: thermal, electricity, flexibility and occupant
activity. In the deliverable, the project baseline solutions have been introduced and presented for the first three
models. The models developed are influenced by the data currently available in the pilots, namely smart
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metering data. In the first phase, the first three models will be further improved and scaled down to the level
of a single prosumer. The start of the first piloting phase will introduce novel, fain grain data that will be included
in modelling experimentation. The federated learning will be further studied and the respective models will be
evaluated.
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4 Methodology and approach

The models developed in this work package form a digital twin of the consumer that can be used to forecast
and optimize consumer flexibility management. The digital twin of the consumer consists of models to forecast
consumer energy loads, flexibility and the response of flexible assets with respect to various control inputs.
Both the behaviour of people and the dynamics of buildings need to be modelled by the digital twin repository.
Depending on the measurement infrastructure, these aspects are also typically highly interlinked and therefore
modelled in the same digital twin in these situations. On the building side, the focus is both on detached houses
and apartment buildings.

In order to realize the digital twin repository of consumers, data-efficient, robust and adaptive methods are
studied and developed to model consumers and flexible assets availability at the consumer’s premises. The
main innovative concepts to be studied in the project include: hybrid-modelling approach that combines
artificial neural networks with physics-based models, utilization of transfer learning to improve the data-
efficiency, and utilization of federated learning to provide a secure and privacy aware solution for the models
implementation. This deliverable presents the initial results of the work, as well as directions and ideas for
future development. Some of the approaches and methods, including transfer learning, will be introduced in
later versions of this deliverable.

4.1 Machine learning

Machine learning (ML) approaches grew out of and alongside the development of artificial intelligence in
1960s. Technological advances in computer hardware and metering allowed the development and application
of ML techniques to various fields of scientific study. As the name implies, ML algorithms allow the computer
to solve a problem without explicit and exact programming, but rather though learning from the sample data.
There are two types of learning: supervised and unsupervised. The former employs learning on sample data
with known outcomes, while the latter works with sample data as is. These two approaches of learning from
data broadly classify various ML techniques. A mix of these two main types gives other learning approaches,
mainly reinforced learning, semi-supervised learning, and dimension reduction, among others.

The main requirement for ML methods, regardless of the learning approach, is having a large enough sample
data set to learn from. Sample data is also called training data. In the case of supervised learning, the result
of each record of the training data is known or expected, which helps to shape the algorithm’s optimization
function. Supervised learning approaches work well with classification and regression problems. On the other
hand, unsupervised learning finds the structure of the unlabelled training data and uses it for clustering and
classification. Based on the problem domain and the nature of the training data, various ML models were
developed, such as Artificial Neural Networks (ANNs), decision trees, support vector machines, Bayesian
networks, and genetic algorithms. Prevalent among those are the ANN, whose type varies (e.g. Feed Forward,
Radial Basis Network, Recurrent Networks, Autoencoder) and applications (e.g. pattern recognition in visual,
auditory, and text data, biological classification, genomics pattern finding or time-series data forecasting).
Artificial neural networks imitate the architecture of the human brain and the functions of the biological neurons.
When the topology of the network includes several specifically interconnected layers, we can apply the so-
called deep learning approach, which enables the modelling of highly complex, non-linear, heterogeneous
data, as well as data with a temporal component (Nielsen, 2020).

A special type of ANN is called Long-Short Term Memory (LSTM) network. It is a deep-learning recurrent
neural network that can utilize long term time dependencies. As in any ANN, there are three distinctive layers:
input, hidden, and output layer. Input and output layers serve as a representation of input and output values.
One or more hidden layers serve to optimize the classification or regression function in the parameter space.
Each neuron in one layer, except for the input layer, is fully connected with all others from the previous layer.
Each connection has a weight, which is constantly updated during the optimization process. The optimization
algorithm during the training typically searches for minimum prediction or classification errors according to the
objective (loss) function. In other words, during the training of the network, candidates for weight values are
determined with a stochastic gradient descent algorithm and then updated using a backpropagation of error
algorithm. Error is evaluated by the objective function.

Among reasons for using LSTM networks for energy load prediction are the inert long term (seasonality) and
short term (daily patterns) of load data in the forecast model. This characteristic also enables flexibility in the
forecast horizon from day-ahead to week or month-ahead predictions. The largest amount of the work was
done for short-term and really short-term predictions with application of various statistical techniques (multiple
regression method, exponential smoothing, stochastic time series), artificial intelligent techniques, knowledge
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based expert systems, and hybrid techniques (Srivastava, Pandey, & Singh, 2016). Comparatively to other
univariate load prediction methods: SARIMA (Chakhchoukh, Panciatici, & Mili, 2011), NARX, SVR (Ko & Lee,
2013), and NNETAR (Hyndman & Athanasopoulos, 2018), the LSTM network had a better forecast accuracy
on the data of building consumption at the 15-minute interval (Zheng, Xu, Zhang, & Li, 2017).

Robust approximations of load consumption patterns using a combination of deep-ANN topologies with the
probabilistic baseline load estimation (Ovdes, Souvent Ovdes, & Ovdes, 2020), will help iFLEX Assistant to
evaluate the flexibility potential for individual users, in the context of their digital twin, and will allow suggesting
of the effective spread of user’s energy demand based on their own limitation and preferences, price signals
and flexibility demands from the network.

4.2 Combining machine learning with physics-based modelling

Artificial neural networks are universal function approximators, meaning that they can in theory model any
function. Deep ANNs (i.e., deep learning) have also been very successful in many practical applications
ranging from perception (Krizhevsky, Sutskever, & Hinton, 2017) and natural language processing (Graves,
Mohamed, & Hinton, 2013) to protein folding (OpenAI, 2020). Despite their success, deep learning has also
limitations. For instance, they typically require a lot of data to provide good results. Additionally, even with large
amounts of data, deep learning models have challenges to generalize beyond training data distribution (Bengio
et al., 2019). A key idea in iFLEX is to utilize AI technologies to form accurate digital twins of consumers
(persons and infrastructure) which ban be used to predict the response of the system with respect to different
type of inputs (HVAC setpoints, flexibility signals, etc.). In this situation, it is not possible to cover all possible
situations in the training data, which is a challenge for ANNs and other types of pure data-based approaches.

An alternative approach to model energy systems is to utilize physics. Physics-based models are useful in
situations where there is a limited amount of data on a given system, while the fundamental physics behind
the system are known. For instance, it would not be practical to collect a vast amount of data on how a building
responses to different temperature setpoints, which would be required to train a pure ANN model to forecast
the flexibility provided by the building’s thermal mass. To this end, the approach utilized in iFLEX is based on
combining physics-based modelling with ANNs. This type of combination of symbolic logic with ANN models
is referred to as Neuro-Symbolic AI (or neurosymbolic AI) in the literature (d’Avila Garcez & Lamb, 2020) and
it is seen as the third wave of AI.

There are many ways to combine physics-based modelling with ANNs. For example, Koponen et al. (Koponen,
Niska, & Mutanen, 2019) studied various combination approaches, including residential hybrid, constraining
models, physically based input forecasts, and ensemble forecasting. Another interesting way to combine ANNs
with physics-based modelling is to utilize physics-based simulation models to generate training data for an
ANN model (De Wilde et al., 2013)(Chou & Bui, 2014)(Turhan, Kazanasmaz, Uygun, Ekmen, & Akkurt, 2014).
Different types of approaches will be investigated and experimented in the iFLEX project. The approach
implemented for phase 1 is based on Neuro-Symbolic AI architecture that combines ANN models and physics-
based models to create a digital twin of the consumer (including the building infrastructure). The models
implemented in phase 1 are presented in more detail in section 5.

4.3 Federated learning

Classical machine learning is done by data scientists by collecting raw data from data owners and training
their model on this data. Since they have access to data it is easy for data scientists to violate data owner’s
privacy.

Federated learning is a technique in machine learning which allows data owners not to reveal any data.

The idea is very simple: let data owners train our model on their data and then combine those models into a
better one.
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Figure 3: Federated learning basic concepts

4.3.1 Privacy concerns
A major concern and an obvious question to ask seems to be: is it possible to reverse engineer individual
models to get access to some private data after it was trained and sent to us by data owners? Generally
speaking, it’s possible. To avoid this, an important idea from differential privacy can be used.

First, we need to understand how to combine different models into a new one in federated learning. It’s simple
- we just average over the corresponding weights. Averaging has an important and useful property illustrated
in the following scenario.

Imagine having a web service and wanting to know the average age of users. One way to get the answer is to
simply ask for their age and calculate the average value. But what if age was a sensitive piece of information?
To avoid knowing exact ages, users could be asked to send in their age plus some (uniformly chosen) random
number between -100 and 100 instead. Each such result would tell us little about exact age of each user, but
when summing them up, random numbers would cancel each other up and we’d be able to calculate the exact
average value (provided there are enough users for statistics to work).

The same idea can be used in federated learning - some random noise is added to each weight by each
individual model before sending it to the data scientist. When combining models, random numbers in weights
cancel each other out and we are still able to get the same combined model as if there was no noise on each
individual weight.

To sum up: by adding noise we make it practically impossible to reverse engineer private data from model,
meanwhile preserving the ability to successfully combine models.

The federated learning with possible applications in some of the project-based solutions is further showcased
and evaluated in Section 5.2.2.5.
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5 Implementation of the digital twin repository

5.1 Overview

The Digital twin repository module documented in this deliverable consists of various models that can be used
to predict the response of the consumption site in different situations. The models are implemented with Python
programming language. Tensorflow 2.0 (Abadi et al., 2016) with Keras API (Chollet, 2018) is used for
implementing the ANN models. The physics-based models are implemented mainly with NumPy (Harris et al.,
2020). The Scikit-learn (Pedregosa et al., 2011) predictive data analytics tool is used for identifying some of
the physical model parameters, as well as, for data clustering. Pandas (McKinney, 2010) is used for timeseries
analysis and processing.

5.2 First phase models

The digital twin repository implemented consists of two types of digital twins: Digital twin of an apartment
building community and a digital twin for a household. The building community digital twin, represented in
section 5.2.1.1.1, consists of models for the following purposes: district heating demand forecasting, electricity
demand forecasting, heating demand forecasting and indoor temperature modelling.  The household digital
twin is presented in section 5.2.2. It consists of prosumer load and flexibility forecasting models.

5.2.1.1.1 Digital twin of a building community

The Digital Twin of the building community consists of three types of models: district heating, electricity and
flexibility. The role of the district heating (DH) and electricity models is to forecast the total DH and electricity
consumption of the apartment building. The flexibility models in turn evaluate and forecast the part of DH and
electricity that is flexible. Figure 4 depicts the mapping between the Digital Twin, measured (and non-
measured) parameters and the residents of the building community.

Figure 4: Conceptual representation of the interdependencies among the Digital Twin, measured parameters (green),
non-measured parameters (blue) and the residents of the building community.
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The green colour indicates the parameters for which we have direct measurements available. As it can be
seen, the total DH and electricity consumption are measured, as well as the average thermal comfort of the
residents. The behaviour of the residents naturally effects both the DH (especially domestic hot water) and the
electricity consumption (especially elevators and Sauna). The flexible asset to be modelled in phase 1, is the
apartment heating, which is provided with a combination of DH and electricity (exhaust heat pump). The main
constraint for the flexibility is the thermal comfort of the residents. Only 0.5 Celsius degree drop in the indoor
temperature is allowed for short periods. Sections 5.2.1.2 and 5.2.1.3 represent details on the models
implemented for the phase 1.

Machine learning pipeline

The pipeline consists of reading and processing historical data, formatting it into training and validation sets,
training the machine learning models and validating their performance, as seen in Figure 5. Each of these
steps are implemented in different Python modules, so that the pipeline is more robust and easier to maintain
and update. Data reading is straightforward, the data is stored in multiple .csv files that are read and parsed
together.

Figure 5. Machine learning pipeline.

Both the DH and electricity consumption models are implemented as Artificial Neural Networks (ANNs), with
their structure presented in Figure 6. The models use Adam optimizer, ReLU activation and mean squared
error loss, all widely used in industry. Additionally, a small configurable dropout is used to provide regularization
in order to prevent overfitting. The early stopping technique is employed to find the optimal network weights.

District heating model uses current outside temperature, month, day and hour and previous value as inputs.
Electricity model uses current outside temperature, hour and previous value as inputs. The training data
consists of four years of hourly data from years 2015 to 2018 and the validation data comprises one year
(2019) of hourly data. Overall, the models are able to capture the dynamics of the system and performed
consistently throughout the year.
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Figure 6: ANN structure of the district heating and electricity consumption models. Here three hidden feedforward layers
are used with small dropout between them to avoid overfitting.
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5.2.1.2.1 District heating demand forecasting

Figure 7: District heating consumption model validation performance using 4-hour long predictions.
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5.2.1.2.2 Electricity demand forecasting

Figure 8: Electricity consumption model validation performance using 4-hour long predictions.

Flexibility modelling

The flexibility of the apartment building is derived from the building’s thermal mass that can be utilized for
shifting the heating. The loads to be shifted include DH and a heat pump. This means that there is a need for
three types of models:

1) Indoor temperature model: The purpose of this model is to predict the indoor temperature when the
amount of energy used for heating is limited. In the first phase, we assume that the heating energy is
reduced to zero during DR events. This model thus predicts the temporal dimension of the flexibility
(i.e., how many minutes can the heating be turned off). The indoor temperature model is the most
complex part of the flexibility modelling and described in more detail in section 5.2.1.3.1.

2) Heat pump model: The purpose of this model is to predict both the electricity consumption and heat
production of the heat pump. Electricity consumption is the amount of flexibility at different time
periods (constrained by the indoor temperature model). Heat production in turn specifies the amount
of heat energy lost from the building during a flexibility event. One difficulty in the modelling is that
neither the electricity consumption nor the heat production of the heat pump are measured separately.
I.e., these parameters are included in the total measurements. However, the problem is simplified
because the heat pump is characterized by constant electricity consumption and heat production. This
is because, the heat pump is typically used with maximum power during the heating season. The
exhaust air used as an input for the heat pump has also a constant temperature. The output
temperature is also known so the heat pumps Coefficient of Performance (CoP) can be estimated
with significant accuracy. In phase one, the heat pump is estimated to have a constant electric
demand of 15.0 kWh and heat energy production of 40 kWh (part of this energy is used for DHW)
when on.

3) District heating model: This model predicts the heating part of the DH consumption which
corresponds to the flexibility provided to the DH network. Again, the challenge is that the heating
energy is not measured separately, and the DH measurement includes also the DHW part. The
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adopted modelling approach is based on the assumption that the heating part is linear and dependant
of the outdoor temperature. I.e., the non-linear part of the DH consumption comes from DHW and is
not flexible (there are no water boilers in the building for DHW). The DH model is thus a linear model
where the gradient of the line is the building heat loss coefficient H. Estimation of the building’s heat
loss coefficient is part of the energy signature (ES) method presented in section 5.2.1.3.3.

The flexibility model can be formally presented as follows:

(𝐸𝑡, 𝐷𝑡, 𝑇𝑡) = 𝑓(𝑇𝑡−1 , 𝑂𝑡, 𝑎𝑡) (1)

             ∀𝑎𝑡 ∈ {0, 1}

where E is the electricity used for heating, D is the district heating energy used for space heating, T is the
indoor temperature, O is the outdoor temperature (forecasted) and a is a binary value indicating whether
heating is on or off.

5.2.1.3.1 Indoor temperature modelling

The building’s indoor temperature modelling is based on applying Newton’s law of cooling, represented in
equation (2).

𝑄 = ℎ𝐴(𝑇 − 𝑇𝑒𝑛𝑣) = ℎ𝐴∆𝑇 (2)

where Q is the rate of heat transfer out of the body (SI unit: watt), h is the heat transfer coefficient (SI unit:
W/m2K), and A is the heat transfer surface area (SI unit: m2).

In the simple modelling approach, the building is treated as a lumped capacitance object with a uniform internal
temperature T. As presented in equation (3), the internal energy U stored into the building can be presented
in terms of this uniform temperature, the heat capacitance C of the building, and a reference temperature at
which the internal energy is zero.

𝑈 = 𝐶(𝑇 − 𝑇𝑟𝑒𝑓) (3)

By differentiating U with respect to time t and applying the first law of thermodynamics we get:

𝑑𝑈
𝑑𝑡 = 𝐶

𝑑𝑇(𝑡)
𝑑𝑡 = −𝑄 (4)

The heat transfer Q out of the building can be represented by Newton’s law of cooling, and thus by combining
(2) and (4), we get:

𝑑𝑇(𝑡)
𝑑𝑡 = −

ℎ𝐴(𝑇 − 𝑇𝑒𝑛𝑣)
𝐶 = −

1
𝜏

(𝑇 − 𝑇𝑒𝑛𝑣) (5)

The solution to this differential equation is:

𝑇(𝑡) = 𝑇𝑒𝑛𝑣 + (𝑇(0) − 𝑇𝑒𝑛𝑣)𝑒−𝑡/𝜏 (6)

where 𝜏 = 𝐶
ℎ𝐴

   => 𝐶
𝐻
 is the time constant of the building cooling. To calculate the time constant, we need to

estimate the heat loss coefficient H and the thermal mass C of the building. It should be noted that with longer
forecasts the outdoor temperature, 𝑇𝑒𝑛𝑣, can change. In this case the forecast for the indoor temperature needs
to be executed in parts while updating the 𝑇𝑒𝑛𝑣 for each time period.

Section 5.2.1.3.2 describes how the thermal capacitance of the building is estimated. Section 5.2.1.3.3
introduces the energy signature method utilized for estimating the heat loss coefficient of the building.

5.2.1.3.2 Estimating the thermal capacitance of the building

The thermal mass (capacitance) of the building, C, can be calculated for example as defined in standards
SFS-EN ISO 13786 or SFS-EN ISO 13790. High detail structural information is needed to perform detail
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calculation of a building’s thermal capacitance. The approach applied in the first phase modelling is based on
utilizing typical values calculated for different building types, and fine-tuning these values based on data
obtained from actual experiments. Table 1 - Table 3 present thermal capacitance values for different building
and structure types that are typical in Finland.

Table 1: Typical thermal capacitance values per conditioned floor area for detached houses in Finland, including the
furniture.

Structure type Example structures C/A [Wh/(m2K)]

Light All walls and floors are lightweight materials. 40
Medium I Base floor is concrete, all other walls and floors are lightweight

materials.
70

Medium II Exterior wall is concrete brick or massive timber, base floor is
concrete and other floors lightweight materials.

110

Heavy Walls are concrete or concrete bricks. Floors are concrete. 200

Table 2: Typical thermal capacitance values per conditioned floor area for apartment buildings in Finland, including the
furniture.

Structure type Example structures C/A [Wh/(m2K)]

Light Base floor is concrete, all other walls and floors are
lightweight materials.

40

Medium Walls are lightweight materials. Floors are concrete. 160
Heavy Floors and walls are concrete. 220

Table 3: Typical thermal capacitance values per conditioned floor area for office buildings in Finland, including the
furniture.

Structure  type Example structures C/A [Wh/(m2K)]

Light Base floor is concrete, all other walls and floors are
lightweight materials.

70

Medium Walls are lightweight materials. Floors are concrete. 110
Heavy Floors and walls are concrete. 160

The pilot building is an apartment building with medium structure type. So 160 Wh/(m2K) is used as an estimate
for C/A. The floor area, A, of the building is 4500 m2, which means that the initial estimate for C is 720 kWh/K.
This parameter of the indoor temperature model can be further fine-tuned based on measurements obtained
from the building.

5.2.1.3.3 Energy signature method

The energy signature (ES) method is a simple method for estimating the heat loss coefficient, H, of a building.
The method is based on modelling the linear relationship between heat consumption and outdoor temperature.
Typically, two linear equations are fitted to the data: one for the heating season and one for the intermediate
season. Figure 9 illustrates an example of the ES method.
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Figure 9: Example of the energy signature method.

Tb refers to the temperature value between the heating season and the intermediate season. Pb is the power
used for domestic hot water (DHW) and domestic hot water circulation (DHWC). The heat loss coefficient of
the building is the gradient of the line fitted to the heating season.

An important part of the ES method is sampling the data into reasonable resolution so that heating dynamics
are averaged out. Daily resolution was selected for the apartment building to be utilized in the pilot.

Figure 10 illustrates the ES plots for years 2015 - 2020. An extra challenge for the case study studied in the
project is that heating in the apartment building is supplied by two sources: district heating and heat pump. To
further complicate the challenge, the heat pump has been operating only part time due to technical issues.
Because of this, two different regression lines can be identified from the heating season: one with the heat
pump and one without the heat pump. The heat pump has been also turned off during summer times because
the price of district heating is so low that it is cheaper to use it for heating.

Data from year 2018 was used for fitting the regression line (and evaluating the building heat loss coefficient).
In order to fit a regression line to the heating season data, the periods in which the heat pump was off and on
have to be separated. To automate this a machine learning clustering algorithm, called a Gaussian mixture
model, was utilized. In practice the clustering was implemented with scikit-learn. StandardScaler of scikit-learn
was used for scaling the data before clustering. Only data below 10.0 Celsius degree (heating season) was
utilized in the clustering. Figure 11 illustrates the results of the clustering as well as the two lines fitted to the
heating season data.

The heat loss coefficient is the gradient of the line when the heat pump has been off. In this case the gradients
are almost identical which indicates that the heat pump output is independent of the outdoor temperature. The
H is 4,14 kW/C° and the linear model of the space heating (DH) is presented in equation (7):

𝑃heating  =  4,14
kW
C°

∗ Tenv + 66,0 [kW] (7)
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Figure 10: Daily average power versus the outdoor temperature for years 2015 - 2020.
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Figure 11: Application of the energy signature method for year 2018 by fitting separate lines for periods in which the heat
pump has been on (orange) and off (blue). Data was clustered with a Gaussian mixture model algorithm.

5.2.1.3.4 Modelling the rebound effect

In addition to modelling the building’s response when the heating is turned off, it is also important to be able
to predict the response when the heating is turned back on. The following assumptions are utilized to model
the rebound effect for the pre-pilot:

1) Turning off the space heating for relatively short periods (1-3 hours) does not influence the energy
consumption used for heating. This means that the down flexibility obtained has to be fully
compensated according to the first law of thermodynamics.

2) The heat pump is producing at maximum power so the full compensation has to be provided by district
heating.

3) The heating system produces heat at maximum power until the set point temperature is reached. This
maximum power (215 kW) was identified from hourly resolution data available from the building.

These assumptions will be evaluated and the modelling will be improved based on the flexibility management
experiments to be executed during the pre-pilots (phase 1). In particular, if the assumption 3) is valid, there is
a need to modify the controller responsible for the space heating so that the heating is limited during the
rebound effect. This is because high peaks in DH should be avoided as they increase the price.

5.2.1.3.5 Integrated flexibility model

The flexibility model for the building is implemented with Python. As presented in equation 2, the model takes
as input the current indoor temperature, as well as the outdoor temperature and control commands (on/off) for
the period to be forecasted. The outputs of the model include the electricity and DH consumed for space
heating, as well as, the indoor temperature for the forecast period.

Figure 12 and Figure 13 illustrate the predicted response of the building provided by the flexibility model. The
predicted response, presented in green and red colours, is compared to the actual values with normal heating
levels (i.e., heating on). As it can be seen, the rebound effect is only visible in the simulated DH consumption.
This is because the heat pump is assumed to operate at full power during the heating season. Figure 13,
shows that the model predicts that the indoor temperature drops slightly below the minimum value of 21.0 C°
so the DR event could only have been executed for two hours in real life.

It should be noted that the flexibility model presented in this deliverable has many assumptions and
simplifications. As we do not yet have any data on how the building behaves when the heating is e.g. turned
off it is not possible to validate or further improve the model at this point. To this end, pre-pilot runs will focus
on collecting data on DR events in order to validate and improve the models.
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Figure 12: Simulated response of the building to a DR event between 09:00 - 12:00. The blue and green colours present
the heat pump’s electricity loads without and with the DR event, respectively. The orange and red lines illustrate the DH

loads without and with the DR event, respectively.

Figure 13: Simulated indoor temperature during a DR event (heating off) between 09:00 - 12:00 versus the set point
temperature.
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5.2.2 Digital twin of a household
The digital twin of a household consists in this initial phase of four models: a household thermal model, a
household electricity model, a household flexibility model and an occupant model. Conceptual relationships
between the models, measured data and household residents are presented in Figure 14. Presented models
are build based on the measured data and their historical values. The models have some clear constraints
related to household comfort influenced by the household residents. Some of the modelling relationships are
denoted with dashed lines, they will be modelled in the second piloting phase. The digital twin model is subject
for improvements in the next project phases.

Figure 14: Household modelling, models in grey, measured parameters in green, constrains in orange, non-measured
parameters in blue. Full arrows represent phase one focus.

The household thermal model aims to evaluate the thermal response of the household and the potential of the
household thermal lag. Heating and cooling can present an important part of energy consumption of a typical
household. When present in electricity consumption, they are roughly proportional to the difference between
indoor and outdoor temperature. The thermal lag tells how the energy flows between the inside of the
household and the outside. The lag depends on physical details of the thermal mass of a building or an
apartment of the household. Thermal mass has the effect of dampening and delaying the transmission of heat
and cold from the outside. Depending on the building characteristics, the delay can vary between a few hours
to more than a day.

The household electricity model defines how the electricity in the household will be consumed and generated,
if generation is present, in the future. These two models are essential for other models building. Both the
consumption and generation are dependent on weather data. The prediction depends on weather data
prediction which is assumed to be provided from external data sources.
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The flexibility models define how much flexibility is available at a certain time period in the household for
specific flexibility provisioning. Flexibility provisioning may be divided between self-provisioning and
provisioning to external parties, for example, for participation in demand response (DR) programmes.
Modelling of external provisioning can be based on information on participation in previous DR programmes
or based on aggregation of household, through HEMS controlled appliances. Three models will be considered:
self-flexibility, aimed at balancing between self generation and consumption, price flexibility, telling how the
household responds in general to DR price signals and aggregated flexibility, defining an aggregated response
of the household through home energy management system (HEMS)  control. The self-flexibility can be defined
on generation and consumption data, price-based flexibility on the consumption forecast and past price events
behaviour, and the aggregated flexibility on usage potential of the controlled appliances through the household
HEMS.

Many large loads are still under direct household occupants’ control like hair-dryers, blenders, TVs, ovens, etc.
Such loads are denoted with other loads in Figure 14. Also, electric vehicles are considered under direct control
though they could be controlled through automation. Defining an occupant behaviour model is a complex task
due to the inherent unpredictability of the human behaviour. A simpler substitute can be defined based on
pattern of usage within days, days of a week or seasons.

In the following sections a baseline for the introduced models will be presented. Some of the models will be
addressed only at later piloting stages.

Data used for models building in the first phase

The data used for modelling in the first phase is of three sources:

- Smart metering data collected in a Critical Peak national project (KKT) in years 2017 and 2018. The
data belongs to more than 700 pilot users and more than 14.000 control users in Celje region. The
region covers more than 200 transformer stations. The data is accompanied with weather data in the
same period. The smart metering data is provided on 15-minute intervals, the weather data is on 1h
intervals. For the weather data temperature, radiation and precipitation measurements are provided,

- Smart metering data being collected in Use it Wisely (UiW) national project from autumn in year 2019
till end of year 2021. The data belongs to more the 700 pilot users and more then 10.000 control users
in Celje region. The region covers more than 200 transformer stations. Besides the residential
consumption also the generation at the prosumers is provided. The data includes industrial consumers
at the substations as well.  The region and the users are not the same as in the KKT project. The data
is accompanied by weather data of same characteristics as in KKT project,

- HEMS data, collected at first phase pilot users. The piloting is planned to start in autumn and at that
time more information will be available on which data will be collected and at which sampling rate.

Prosumer flexibility forecasting

The starting point of flexibility forecasting is the prediction of the response of prosumers to a price signal. The
model which will be presented is a generalization of a price flexibility model as denoted in Figure 14.

The flexibility based on price signals is defined as the ability of the consumers to adapt their consumption
according to the price of the energy they are consuming. The approach estimates harvested flexibility during
a flexibility event. The flexibility event is defined as a time interval when an aggregator signals a price change
– positive or negative deviation from standard price. Deviations are considered from the aggregator point of
view. Positive deviation introduces higher price of energy and negative lower price. The higher price periods
aim at lowering the peak in the period and lower price periods increasing the consumption at the period.

The modelling is based on past flexibility events. In 2017 and 2018 Elektro Celje (ELE), SCOM and JSI have
participated in a national project called “Critical peak tariff” (CPT). The project has been granted by The Energy
Agency in the Slovenian energy market1 and has introduced a positive critical peak tariff (PKKT) as an incentive
for consumers. At time of the PKKT the network fee was up almost 10-fold to normal tariffs and in the rest of
the time was a bit lower – on the end, for both tariffs combined, the consumers were paying less than they
would normally do in the same period. Over 700 households participated in the pilot. The pilot prepared 42
flexibility events which have been announced a day ahead based on consumption forecast of 209 transformer
stations, participating in the pilot. The events were on average one hour long but some experimentation has
been done with two-hour events. The modelling will be updated based on currently running project “Use it

1 See the agency home page for more details: https://agen-rs.si/web/en/about-the-agency
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Wisely” (UiW) results. The project involves the same partners as the previous one. However, the PKKT
incentive of the UiW supports a “negative” incentive as well – NKKT. During the NKKT periods, the network
fee is much lower than normal. 3650 hours are available for NKKT and 100 hours for PKKT per year. Roughly
the same number of households participates in the project as before, while their topological spread is similar
– but different – to the CPT project.

The data used as input for the flexibility modelling is aligned across flexibility events. The events used as input
lasted for one hour or two hours. Events are scheduled during different times, depending on a time of the year.
For this reason, they were aligned at event start including with an hour and a half before and after one hour
event and an hour before and after two hours events. Combined, all events were four hours long. Sample two-
hour event is presented in Figure 15. The flexibility event took place between 18:15 and 20:15. The event is
marked with 1 in event column and intervals before and after events are marked with 0. All aligned events
have the same event index.

Figure 15: Sample flexibility event data

Flexibility forecast is done based on past flexibility events, consumer response and weather data. For the
forecast a black box model is used. Linear, multilinear, Deep Neural Network (DNN) (LeCun, Bengio, & Hinton,
2015), Recurrent Neural Network (RNN) (Jordan, 1986) or gradient boosted tree (Natekin & Knoll, 2013) based
models have been evaluated to model the flexibility relationship.

A simple linear model is presented in Figure 16.  A dense neural network node presents a base for the linear
model. Applying temperature and consumption data of the events’ time slots to the model gives the results in
Figure 17.  From the figure we can recognise the thermal response of the households, indicating both the
heating part in the left-hand side of the figure and the cooling dependency at temperatures higher than 23C.
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Figure 16: Simple linear model

Figure 17: Linear regression and temperature dependency of event consumptions

An example Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) stacked neural network
model used is presented in Figure 18. The neural network uses dense pre-layer and five 128 nodes LSTM
layers stacked one on another and connected in a ResNET (He, Zhang, Ren, & Sun, 2016) manner to prevent
a vanishing gradient problem. Each LSTM layer is accompanied with a dropout layer.

For the extended flexibility events the consumption has been forecasted with a chosen model based on the
data outside the events. For different models, the predictions are given in Figure 19. The black line presents
the real consumption of the aligned events. The blue and red line present LSTM model, presented in Figure
18, prediction. The yellow and green lines are XGboost (Chen & Guestrin, 2016) predictions, green one is
parameter optimized.

It can be seen from Figure 19 that the XGBoost prediction seems to be superior to LSTM model one. When
the right model is selected, the flexibility can be calculated as a difference between predicted and real
consumption on the flexibility events. Based on this data, in a similar manner as before, the new flexibility
events and their flexibility can be predicted. Flexibility prediction is limited only to weather forecast availability.
While doing the prediction, care needs to be taken to take into the account the number of consumers
participating in the event. The approximate time of previous events should be taken into account for new
events.

It has to be decided how to progress from common flexibility prediction to individual prosumer flexibility
prediction. At first, new data from UiW project will be evaluated and the data used for modelling will be updated.
Besides the PKKT incentive, also the NKKT incentive data will be evaluated in a similar manner to see how
cheaper networking fees stimulate higher consumption in off peak hours. Then, the flexibility of an individual
will be evaluated over all PKKT and NKKT events. The model will be built in a similar manner to common
flexibility prediction models and evaluated on the events data. The model will be confirmed by aggregated
models as well for the prosumers with HEMS systems available, already in the first phase. The price-based
model is important since it allows to evaluate the flexibility of the prosumers on smart metering data only.
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Figure 18: LSTM stacked model with dense pre layer
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Figure 19: Aggregated and averaged flexibility response, multiple models

Prosumer load and generation forecasting

Prosumer load and generation forecasting is one of the core services expected from iFLEX Assistant. The load
forecast enables to assess implicit flexibility potential as has been discussed in 5.2.2.2 so it can be reported
to flexibility services operators, allows for more optimal automation control and management, helps the end
user to decide which flexibility services to participate in, etc. The generation forecasting helps to plan how to
use self-flexibility to balance the household own consumption as well as to plan future consumption potentials.

Figure 20: Stacked LSTM model consumption prediction

The baseline services already provided are based on forecasting the consumption of a group of pilot users in
the CPT and UiW project. The consumption of more than 750 users is regularly forecasted for a week in
advance to be able to select optimal days and time intervals for the flexibility events. For the week forecast,
the key input parameter is the time of expected peak so that the flexibility event will match the peak. On overall
year horizon it would be optimal to shave the highest peaks in the network for the KKT incentive to have the
best effect. For this purpose, also the height and shape of the peak is important so the right peaks could be
selected for shaving.
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Two types of models have been used and evaluated for UiW project prediction: LSTM neural network based
model and XGBoost model. The LSTM model is similar to the one in Figure 18. The stacked LSTM model with
dense pre-layer and dropout layers provides in 512 node, 6 layer configuration, the result as is presented in
Figure 20. The input vector consists of 183 variables based on statistical variations of inputs of previous
consumptions, time based and weather parameters: temperature, radiation and precipitation. The prediction
is provided for a week in advance, the variables are build in a way to allow the prediction of a whole week. A
whole week is mostly not achievable since the metering data is D-1 and event data is not complete. The real
forecasting span is then 5 days long. The weather forecast provided is for 7 days.

In Figure 21, a basic evaluation of five statistical parameters of the forecast is provided per day in percentage
values: peak height error (blue), peak time error (orange), min value error (green), peak-to-peak error (red),
standard deviation error of day data (violet) and mean error (brown). From Figure 20 and Figure 21 it can be
seen that the peak time is quite well predicted. The peak height prediction error varies around and below 10%,
with one bold missed prediction on 24th of May. Peek-to-peek and standard deviation errors are in the range
of 20% and the mean value error is close to the peak error.

Figure 21: Stacked LSTM model consumption prediction errors

Figure 22: XGBoost optimised consumption prediction model
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Figure 23: XGBoost optimised consumption prediction model errors

In Figure 22 a XGBoost prediction of the same load is provided. The observation of the figure indicates that
the model behaves better then the stacked LSTM model. Similar truth conveys the error report in Figure 24
which shows peak time error close to 0%, mean, peak and peek-to-peek error in the range of 10% and standard
deviation error in the range of 20%. The minimum value has a significant error, at least in three prediction
days.

The generation prediction is provided only for XGBoost model in Figure 24. The generation prediction of overall
generation at all prosumers in the pilot group is not perfect. We will need to check it against single user
prediction and try to predict the aggregated from there.

Figure 24: XGBoost generation prediction

The baseline shows that the predictions at a level of a few hundreds of consumers are possible, though not
completely accurate. The predictions based on the data collected in 2020 and 2021 are even harder, since the
patterns of household consumption usage are very diverse, due to COVID-19 pandemic. In the next period the
predictions will need to be scaled down to a level of a single prosumer.
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Thermal modelling

The thermal modelling involves studying of the household thermal response to outside temperature and of the
household thermal lag. In the first phase only the thermal response has been studied. In Figure 25 the thermal
response of the piloting group of households in the CPT project is presented. The data in the figure is based
on smart metering of more than 750 pilot users. In the figure, daily averages for year 2018 are presented with
respect to the daily temperature average. The average daily consumption is in the range of 30kW to more than
70kW. The average daily temperature is in the range of -13 to +25C. What can be seen in the figure is that
both the thermal dependency for lower and higher temperatures exist. At lower temperatures, the consumption
grows due to heating at some of the households. At higher temperatures the consumption also increases and
the graph gets a typical “hockey stick” look, due to the cooling in some of the households. In contrast to the
Finish example in Figure 9, the bottom figure shows the increase of the consumption after the tipping point
temperature of 18C, which is a rough estimation given in (Borgeson, 2013). The thermal response observed
on daily averages corresponds with the thermal response evaluated during flexibility events as presented in
Figure 17.

Figure 25: Thermal response of CPK project pilot group (2018)

The thermal response can be modelled with linear regression models as shown in the equation below. For
basic modelling we have used a simple linear regression model as is provided by sci-kit learn, a Python toolkit
for predictive data analysis2. The sci-kit Linear Regression module fits a linear model with coefficients  = (0,
…, n) to minimize the residual sum of squares between the observed targets in the dataset, and the targets
predicted by the linear approximation.

𝑦 =  𝑏0 +  𝑏1𝑥𝑖1 +  … + 𝑏𝑛𝑥𝑖𝑛 + 𝑒𝑖 (8)

In the first modelling approximation only two parameters have been modelled, namely 0 and 1. Sample
thermal responses are shown in Figure 26. The figures on the left hand side, from top to bottom:

  the upper figure presents clean, low temperature thermal response. The household uses electrical
energy for heating only. The average daily consumption is up to 4kW maximum.

 the second figure presents a more scattered consumption with clear heating characteristics at low
temperatures and cooling characteristics at high temperatures. In comparison to top figure example,
more scattered consumptions could indicate an older house with more diverse thermal response.

 the third figure again indicates quite a scattered response. Two average consumption patterns are
present at lower temperatures. The upper, indicating usage of electricity for heating and the lower one,

2 See sci-kit learn home page for details: https://scikit-learn.org/stable/index.html
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when some other kind of heating seems to be used. The higher temperature consumption response
is weak.

 the last figure presents a response with no thermal dependency, where the consumption is the same
regardless of the temperature.
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On the right-hand size of Figure 26, the top 30 1-parameter households are presented. The 1 parameter
denotes the slope of the linear regression line through the data. The top household uses exhibit an increase
of 250W for every one degree Celcius less, according to the linear regression model. The 0 parameter denotes
an interception point with y axis, roughly indicating the top daily average consumption.

Figure 27: Clustering of the CPT piloting group per thermal response below vs. above tipping point (18C) in year 2018

Figure 28: Piloting users consumption cluster information

To further model the household consumptions, they have been split at the tipping point of 18C. In this way,
average daily consumptions at temperatures higher and lower than 18C were grouped. Each group has been
modelled with the linear regression strategy, employing a two-parameter model, as has been explained
previously. The modelling has led to two group of parameters. For higher temperatures, the 1h parameter is
expected to be slightly negative when no cooling is present and higher, when the household uses cooling
systems. For lower temperatures, the 1l parameter is expected to be negative, since consumption should rise
when the temperature is dropping. A few combinations of both 1 parameter can be expected:

- 1l  0, 1h  0: the household uses electricity for cooling,

- 1l  0, 1h  0: the household is not thermal dependent,

- 1l  0, 1h  0: the household uses electricity for heating,

- 1l  0, 1h  0: the household uses electricity both for heating and cooling.

Based on these assumptions, Figure 27 presents the clustering of the households according to 1l  (Slope ≤
18C) and 1h (Slope > 18C). Clustering has been done with sci-kit learn K-means clustering algorithm. Five

Figure 26: Individual households temperature dependencies



D3.1 Initial Hybrid-modelling module

Document version: 1.0 Page 34 of 51 Submission date: 2021-06-14

clusters were used. The orange cluster outpoints households with large heating dependency. The cooling
dependency is either present or not. The green cluster indicates medium heating dependency and similar
cooling dependency to the orange cluster. It could be that the cluster uses both electricity and other energy
sources for heating. The red and blue cluster exhibit similar low thermal dependency. The red one seems to
be more constant in energy consumption and the blue one shows similar low heating dependency but even
lower consumption at the temperatures above the tipping point. The violet cluster indicates low heating and
high cooling dependencies. The households in this cluster seem to use alternative energy sources for heating
exclusively and energy for cooling only. As such, they are a nice group with a potential for future energy
installations (heat pumps, photovoltaics, etc.). Finally, the k-means clustering is not as efficient as envisioned.
The clusters are not close to intended split in four clusters as were presented before. More experimentation is
neded with additional parameters or different method of clustering.

In Figure 28, basic information about the clusters is provided. In the first column, the strength of the cluster is
given. The red (3) and blue (0) clusters are the strongest in number. They present more than two thirds of the
population. Their thermal response does not promise much potential in future DR programmes. The orange
(1), green (2) and violet (4) clusters, show more potential, either for direct participation in flexibility services or
as a potential to receive energy advice how to alter existing energy settings. Combined, these clusters
consume almost 38% of the overall consumption.

Federated learning: practical example in PySyft3

In this simple example we have two data owners and a data scientist. Both data owners generate sensitive
data. We pretend that the data was actually acquired through some measurements from data owners by adding
some noise.

The data scientist wants to find out what the function that generated the data was, without ever getting access
to actual data. Data scientist achieves this through federated learning.

Data used in this presentation is going to be quite simple - function generating data is linear:

𝑦 = 𝑓(𝑥) = [1,2, … ,7] ∗ 𝑥 ⃗ + 42 (9)

or equivalently

𝑦 = 𝑓(𝑥1, … , 𝑥7) =  1 ∗ 𝑥1 + 2 ∗ 𝑥2 + ⋯ + 7 ∗ 𝑥7 + 42 (10)

If data was centralized, the data scientist could build a simple neural network with only one linear layer.
Resulting model would look something like [w1, w2, . . . , w8] and during training it should converge to some
approximation of actual function coefficients [1, 2, 3, 4, 5, 6, 7, 42].

Without access to actual data, the data scientist describes the model and lets data owners train that model on
their private data. After both data owners are done building the model, they send it back to the data scientist.
Data scientist then combines both models by averaging individual weights. This combined model is a better
approximation for the function that generated both data owner’s data than any individual model.

Explicitly: let’s say that the model trained on the first data owner’s data is described by [w1,1, w1,2, . . . , w1,8]
and the model trained on the second data owner’s data is described by [w2,1, w2,2, . . . , w2,8]. The combined
model, calculated by the data scientist is then described by

𝑤1,1 + 𝑤2,1

2 ,
𝑤1,2 + 𝑤2,2

2 , … ,
𝑤1,8 + 𝑤2,8

2  (11)

We can see that this technique is easily adapted to situations with more than two data owners.

To further simplify the procedure, we shall avoid using differential privacy techniques.

3 PySyft, A library for computing on data you do not own and cannot see. See PySyft home page for more information:
https://github.com/OpenMined/PySyft
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5.2.2.5.1 PySyft

Pysyft is a python library offering implementations of certain privacy tools/techniques: federated learning,
differential privacy, secure multi-party computations and homomorphic encryption.

5.2.2.5.2 Code

To follow the example three notebooks need to be started: ’DataOwner1.ipynb’, ’DataOwner2.ipynb’ and ’Data-
Scientist.ipynb’.

The following pages contain screenshots of the python notebooks. Under each screenshot are the names of
the notebooks in which you have to enter the code from that screenshot.

5.2.2.5.2.1 Import libraries

Figure 29: Run at DataOwner1, DataOwner2 and DataScientist

5.2.2.5.2.2 Launch Duet server 1 and send Duet Server ID to the Data Scientist and wait for him to connect

Figure 30: At DataOwner1: Launch Duet server 1 and send Duet Server ID to the Data Scientist and wait for him to
connect



D3.1 Initial Hybrid-modelling module

Document version: 1.0 Page 36 of 51 Submission date: 2021-06-14

5.2.2.5.2.3 Launch Duet server 2 and send Duet Server ID to the Data Scientist and wait for him to connect

Figure 31: At DataOwner2: Launch Duet server 2 and send Duet Server ID to the Data Scientist and wait for him to
connect

5.2.2.5.2.4 Connect to the first Data Owner’s duet server and send back Duet Client ID

Figure 32: At DataScientist: Connect to the first Data Owner’s duet server and send back Duet Client ID
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5.2.2.5.2.5 Connect to the second Data Owner’s duet server and send back Duet Client ID

Figure 33: At DataScientist: Connect to the second Data Owner’s duet server and send back Duet Client ID

5.2.2.5.2.6 Accept Data Scientist as a client by entering their Duet Client ID

Figure 34: At DataOwner1 and DataOwner2: Accept Data Scientist as a client by entering their Duet Client ID
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5.2.2.5.2.7 Connection between Data Owner and Data Scientist successfully established

Figure 35: At DataOwner1 and DataOwner2: Connection between Data Owner and Data Scientist successfully
established

5.2.2.5.2.8 Define data generating functions

Figure 36: At DataOwner1 and DataOwner2: Define data generating functions
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5.2.2.5.2.9 Generate data using those functions - 1000 samples, 7 features

Figure 37: At DataOwner1 and DataOwner2: Generate data using those functions - 1000 samples, 7 features

5.2.2.5.2.10 Upload pointers to ’data’ and ’target’ to Duet server
Pointers on Duet server are memory addresses to Data Owner’s data. They contain zero information about
data they are pointing to.

Figure 38: At DataOwner1 and DataOwner2: Upload pointers to ’data’ and ’target’ to Duet server

5.2.2.5.2.11 Accept all requests
Duet client (Data Scientist) is able to get data that pointers are pointing to through requests. Requests can be
manually accepted or denied. While developing we accept all requests for practical reasons.

Figure 39: At DataOwner1 and DataOwner2: Accept all requests

5.2.2.5.2.12 Define machine learning model
Data in this example is so simple we only need one linear layer. PySyft inherits largely from PyTorch so it’s
really similar to defining ML model in PyTorch. The main difference is that it works with pointers to objects
instead of directly with objects.

Figure 40: At DataScientist: Define machine learning model

5.2.2.5.2.13 Define train function
The main loop runs on our machine but actual work (computing loss, gradients) is done on the Data Owner’s
machine. This loop basically tells Data Owners machine what to do through pointers. As Data Scientists we
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need feedback about losses, to see if training is actually converging. We do this through requesting the actual
value of pointers to loss value. Requests require some back-and-forth communication and are bottlenecking
whole process, that’s why we only request every 100th loss value.

Figure 41: At DataScientist: Define train function

5.2.2.5.2.14 Save pointers to ’data’ and ’target’ from both Data Owners from Duet.store

Figure 42: At DataScientist: Save pointers to ’data’ and ’target’ from both Data Owners from Duet.store

5.2.2.5.2.15 Get pointers to additional information needed in our train function
Firstly, we need pointers to base models. We do this by compiling our previously defined model locally and
sending it to the Data Owner. The value returned by that process is a pointer to the remote model. We also
need pointers to remote Torches and optimisers.
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Figure 43: At DataScientist: Get pointers to additional information needed in our train function

5.2.2.5.2.16 Run training loop on first Data Owner’s data

Figure 44: At DataScientist: Run training loop on first Data Owner’s data

5.2.2.5.2.17 Run training loop on second Data Owner’s data

Figure 45: at DataScientist: Run training loop on second Data Owner’s data

5.2.2.5.2.18 Send requests to get content of pointers to models trained on individual Data Owner’s data

Figure 46: At DataScientist: Send requests to get content of pointers to models trained on individual Data Owner’s data

5.2.2.5.2.19 Measure the error of individual trained model
As described in the previous section, both models should look close to [1, 2, . . . , 7, 42]. We define model error
as its distance from [1,2,...,7,42].
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Figure 47: At DataScientist: Measure the error of individual trained model

5.2.2.5.2.20 Combine both models through averaging individual weights and calculate error of combined
model

Figure 48: At DataScientist: Combine both models through averaging individual weights and calculate error of combined
model

5.2.2.5.2.21 Combined model should be better than individual models

Combined model error is smaller than individual model error

Figure 49: At DataScientist: Combined model should be better than individual models
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6 Conclusion

This deliverable has documented the initial work on the digital twin repository module of the iFLEX Framework.
The digital twin module consists of several models supporting forecast and response modelling of the
apartment buildings and prosumer households. In this phase, initial models were presented, as well the project
baselines as a starting point of the project work. Through planned work in the first phase of the project pilots
more fain grain data and building and household system information will become available. The data and
system information will help to improve the models and foster their application and usage in overall iFLEX
framework solutions. Federated learning will be further evaluated to improve the privacy aspects of the models.
Transfer learning will be introduced and its application to developed models shall be studied. The work in the
task T3.1 and the planned improvements will be reported in the next revision of this deliverable at M17.
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9 Appendix: Digital twin Jira requirements

[IF-68] Apartment building flexibility model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: The flexibility model forecast part of the building energy consumption that is flexible
and available to be used in flexibility services.

Source: HLUC-3, PUC-6, PUC-8, PUC-9, PUC-10
Pilot Finland: Phase one
Pilot Greece: Not applicable
Pilot Slovenia: Not applicable

Description
Define an apartment building flexibility model and forecast available flexibility in a specified time frame.

[IF-67] Apartment building electricity model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: Electricity consumption in the building together with the district heating model provides
information on total energy consumption in the building.

Source: HLUC- 3, PUC-8, PUC-10
Pilot Finland: Phase one
Pilot Greece: Not applicable
Pilot Slovenia: Not applicable

Description
The apartment building electricity model provides forecast for electricity consumption in a building.
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[IF-66] Apartment building district heating model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: District heating supplies part of energy to the apartment building and is important to
understand general thermal conditions in the building. The model is used in
combination with electricity consumption model to forecast a total energy and
electricity consumption in the building.

Source: HLUC-3, PUC-8, PUC-10
Pilot Finland: Phase one
Pilot Greece: Not applicable
Pilot Slovenia: Not applicable

Description
Create district heating model and provide a district heating forecast for a specified period.

[IF-65] Household occupant behaviour model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: Many of the loads in the household are under direct consumer control. To be able to
predict a general household consumption more accurate an occupant behavior model
is needed.

Source: PUC-4, PUC-5, PUC-6, PUC-8, PUC-10
Pilot Finland: Not applicable
Pilot Greece: Not applicable
Pilot Slovenia: Phase two

Description
Define an occupant behavior model for better prediction of the household consumption.
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[IF-64] Household flexibility model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: Flexibility forecast is needed for planning of various flexibility services, from self-
balancing to implicit, price based, and explicit flexibility services. The flexibility can be
reported to flexibility services management for better planning and optimization.

Source: PUC-8, PUC-4, PUC-5, PUC-6, PUC-10
Pilot Finland: Not applicable
Pilot Greece: Phase two
Pilot Slovenia: Phase one

Description
Create a household flexibility model. The model is able to provide a forecast of an available household
flexibility in a specified time-frame.

[IF-63] Household electricity model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: A basic service for iFLEX Assistant. The service forecast the consumption and
generation so the other iFLEX Assistant components could plan for and automate the
household consumption as well evaluate future participation in flexibility services.

Source: HLUC-1, PUC-4, PUC-6, PUC-8, PUC-10
Pilot Finland: Not applicable
Pilot Greece: Phase two
Pilot Slovenia: Phase one

Description
Create a household electricity model being able to forecast the household consumption and generation.
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[IF-62] Household thermal model

Status: Open
Project: iFlex Project
Component/s: None
Affects Version/s: None
Fix Version/s: None

Type: Functional Priority: Major
Reporter: Dusan Gabrijelcic Assignee: Unassigned
Resolution: Unresolved Votes: 0
Labels: DigitalTwinRepository

Rationale: A thermal model is essential to understand the household consumption and evaluate
its future flexibility potential.

Source: PUC-5
Pilot Finland: Not applicable
Pilot Greece: Not applicable
Pilot Slovenia: Phase one

Description
Create a household thermal model and potential thermal lag.


