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1 Executive summary

This deliverable documents the digital twin repository module of the iFLEX Framework for phase one and work
done related to project phase 2. This deliverable updates the status of the work from D3.1 Initial Hybrid
modelling module. The digital twin repository consists of models to forecast and simulate consumer’s baseline
load, flexibility and response to flexibility signals. The models in the digital twin repository can be used to
evaluate the impact of individual consumers, as well as, to optimize flexibility management on a consumer
level. The modelling methodologies studied in the work combine advanced machine learning methods with
physics-based modelling and expert knowledge in an innovative way. Moreover, we study novel applications
of federated learning in the context of modelling individual prosumers.

The digital twin repository documented in this deliverable consists of digital twins for an apartment building and
a household. For the apartment building, different approaches to build digital twins have been tested. The
apartment building’s digital twins are based on a hybrid-modelling approach that combines machine learning
with physics and expert knowledge. The first digital twin consists of three types of models: two machine
learning models for electricity and district heating baseline load forecasting, and a simple physics-based grey-
box model for estimating the flexibility of a building’s heating system. Different Artificial Neural Network
architectures and models were implemented, trained and evaluated in order to find an appropriate model for
baseline load forecasting (both electricity and district heating). The heating flexibility model consists of an
indoor temperature model and energy consumption models for space heating, provided by a heat pump and
district heating. The second type of digital twin for the apartment building utilizes machine learning both for
electricity and district heating baseline forecasting. In this approach, machine learning is also used to estimate
the reaction for the demand response control signals and a physics-based model is used for the indoor
temperature model to calculate the flexibility capacity.

The household digital twin is based on four types of models: a household thermal model, an energy
consumption model, a flexibility model and an occupant activity model. The initial baseline of the models is
explained and presented. The data used for the modelling is introduced. The models consist partly of neural
networks and partly of gradient boosting based solutions. Potential use and further improvements in next
phases of the project are also provided. In addition, federated learning has been introduced and a simple
example of its usage is presented. Further application of federated approach to the addressed household
models will be evaluated already in the first piloting phase.

This deliverable reports intermediate results on the model evaluation. This deliverable also documents the
initial results of the work that was required for the pre-pilot and is required for phase 2 pilots. Updates and
improvements to the approaches, methods and implementations will be documented in D3.3: Final Hybrid-
modelling module.
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2 Introduction

2.1 Purpose, context and scope

This document is the second of the three revisions (D3.1, D3.2 and D3.3). The first revision D3.1 documented
the digital twins used in the pre-pilot phase. This deliverable documents the intermediate results of task 3.1 -
Digital twin of the consumer and task 3.2 - Hybrid-models for energy system modelling. The role of these tasks
is to create a digital twin of a consumer and his energy systems (i.e., building, HVAC, renewables, appliances,
etc.) in order to forecast baseline loads, flexibility and response of the consumer. For brevity reasons, the
terms consumer and prosumer are used for the whole metering point, including the persons and infrastructure.
The digital twins documented in this deliverable form a digital twin repository that can be used to instantiate
models for different situations. In particular, the digital twins are used for the following main purposes:

e To forecast and evaluate the flexibility impact of the consumer in order to provide individual incentives
and rewards.

e To perform model-based planning and control that adapts to the consumer behaviour and optimizes
flexibility with respect to external prices and incentives.

Two types of consumers are considered so far: households and building communities. A household type
consumer is a family comprising of one or more people. A building community consists of several families that
live in an apartment building. The space heating, domestic hot water (DHW), and common electric
consumption (e.g. ventilation, elevators, lighting, Sauna) of the apartment building are paid collectively by the
building community (the costs are typically included in the rent or in the maintenance fees).

2.2 Content and structure

The deliverable is structured as follows:

e Section 3 provides an overview, mapping the contents of the deliverable to the use cases and the
iFLEX architecture.

e Section 4 introduces the main methods and approaches applied in the work.

e Section 5 describes the digital twin repository implementation, as well as details on the approaches
applied in different models of the digital twins.

e Section 6 concludes the deliverable.
2.3 Main changes compared to the initial version

¢ New requirements have been added to 3.1 based on the goals of the second phase of the piloting

e Section 4 has been updated with more details on the hybrid modelling methodologies studied in the
project.

e Section 5.2 describes a new automated modelling pipeline used by the digital twin repository which
enables creating digital twins as automated as possible

e The initial hybrid modelling approach has been updated. The idea is still the same but the model
implementation has been redone based on the results and feedback collected in phase 1. Furthermore
the documentation (in section 5.3.1.1) has undergone a major revision.

e Section 5.3.1.2 describes a new approach to model the district heating and electricity power during
and after demand response events using machine learning
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3 Overview

3.1 Relation to use cases

The project has defined a number of use cases in the D2.1 - Use cases and requirements. Some of the use
cases are directly related to the work described in this deliverable and in task T3.1. The following requirements
were prepared for the first phase of the deliverable, while selection has been influenced by the goals of the
first phase piloting:
e |F-62: Household thermal model, related to the use case PUC-5
e |F-63: Household electricity model, related to use cases HLUC-1, PUC-4, PUC-6, PUC-8, PUC-10
e |F-64: Household flexibility model, related to use cases PUC-8, PUC-4, PUC-5, PUC-6, PUC-10
e |F-65: Household occupant flexibility model, related to use cases PUC-4, PUC-5, PUC-6, PUC-8, PUC-
10
e |F-66: Apartment building district heating model, related to use cases HLUC-3, PUC-8, PUC-10
e |F-67: Apartment building electricity model, related to use cases HLUC- 3, PUC-8, PUC-10
e |F-68: Apartment building flexibility model, related to use cases HLUC-3, PUC-6, PUC-8, PUC-9 and
PUC-10.
The following requirements were added for the second phase of the deliverable, where selection is again
based on the goals of second phase piloting:

e |F-105: Data collection from demand response tests, related to the use case PUC-8

e |F-106: Machine learning based apartment building district heating and electricity flexibility models:
Related to the use case PUC-8

The requirements are managed in the project Jira service, as is presented in Figure 1. Within Jira, the
requirements are described, prioritised and developed. The current status of the requirements is given in
Appendix 9 of this deliverable.
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Figure 1: Digital twin requirements captured in the project Jira

3.2 Relation to the functional architecture of the iFLEX Framework
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Figure 2 highlights the Digital twin repository module, whose initial implementation is documented in this
deliverable. The Digital twin repository module is capable of forecasting and simulating the baseline loads,
flexibility and response of the consumer/prosumer. This functionality is utilized by the Automated flexibility
management module (revised version to be documented in D3.8 - Revised Automated flexibility management
module) for model-based planning and control.
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Figure 2: Functional view of the iIFLEX Framework with the Digital twin repository module highlighted.

3.3 Focus of the project phases

The implementation of the Digital twin repository module is targeted for phase 1 and phase 2 pilot deployments,
specified in D7.2 — Revised Pilot specifications. The goal in phase two is to utilize the initial methods and
models from phase 1 (pre-pilot), fine-tune and finalize model, improve the modelling with new hybrid
approaches and build new functionalities on top of those.

There are two types of digital twins that were identified already in the first phase of the project and are now
being extended: building community and household. For the first phase, the following models were developed
for the digital twin of the building community: electricity baseline model, district heating baseline model, and
flexibility model. Relatively standard Artificial Neural Network models were developed to forecast the baselines.
For the flexibility modelling, two different approaches are tested in phase 2. In the first approach, a simple
physics-based grey-box model was developed to model flexibility provided by the building’s space heating
(i.e., indoor temperature, and energy used for space heating). In the second approach, a physics-based model
was used for indoor temperature modelling to estimate flexibility capacity and machine learning was used to
model energy consumption in different scenarios.
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4 Methodology and approach

The models developed in this work package form a digital twin of the consumer that can be used to forecast
and optimize consumer flexibility management. The digital twin of the consumer consists of models to forecast
consumer energy loads, flexibility and the response of flexible assets with respect to various control inputs.
Both the behaviour of people and the dynamics of buildings need to be modelled by the digital twin repository.
Depending on the measurement infrastructure, these aspects are also typically highly interlinked and therefore
modelled in the same digital twin in these situations. On the building side, the focus is both on detached houses
and apartment buildings.

In order to realize the digital twin repository of consumers, data-efficient, robust and adaptive methods are
studied and developed to model consumers and flexible assets availability at the consumer’s premises. The
main innovative concepts to be studied in the project include: hybrid-modelling approach that combines
artificial neural networks with physics-based models, utilization of transfer learning to improve the data-
efficiency, and utilization of federated learning to provide a secure and privacy aware solution for the models’
implementation. This deliverable presents the intermediate results of the work, as well as directions and ideas
for future development. Some of the approaches and methods, including transfer learning, will be introduced
in the final version of this deliverable.

4.1 Machine learning

Machine learning (ML) approaches grew out of and alongside the development of artificial intelligence in
1960s. Technological advances in computer hardware and metering allowed the development and application
of ML techniques to various fields of scientific study. As the name implies, ML algorithms allow the computer
to solve a problem without explicit and exact programming, but rather though learning from the sample data.
There are two types of learning: supervised and unsupervised. The former employs learning on sample data
with known outcomes, while the latter works with sample data as is. These two approaches of learning from
data broadly classify various ML techniques. A mix of these two main types gives other learning approaches,
mainly reinforced learning, semi-supervised learning, and dimension reduction, among others.

The main requirement for ML methods, regardless of the learning approach, is having a large enough sample
data set to learn from. Sample data is also called training data. In the case of supervised learning, the result
of each record of the training data is known or expected, which helps to shape the algorithm’s optimization
function. Supervised learning approaches work well with classification and regression problems. On the other
hand, unsupervised learning finds the structure of the unlabelled training data and uses it for clustering and
classification. Based on the problem domain and the nature of the training data, various ML models were
developed, such as Atrtificial Neural Networks (ANNS), decision trees, support vector machines, Bayesian
networks, and genetic algorithms. Prevalent among those are the ANN, whose type varies (e.g. Feed Forward,
Radial Basis Network, Recurrent Networks, Autoencoder) and applications (e.g. pattern recognition in visual,
auditory, and text data, biological classification, genomics pattern finding or time-series data forecasting).
Artificial neural networks imitate the architecture of the human brain and the functions of the biological neurons.
When the topology of the network includes several specifically interconnected layers, we can apply the so-
called deep learning approach, which enables the modelling of highly complex, non-linear, heterogeneous
data, as well as data with a temporal component (Nielsen, 2020).

A special type of ANN is called Long-Short Term Memory (LSTM) network. It is a deep-learning recurrent
neural network that can utilize long term time dependencies. As in any ANN, there are three distinctive layers:
input, hidden, and output layer. Input and output layers serve as a representation of input and output values.
One or more hidden layers serve to optimize the classification or regression function in the parameter space.
Each neuron in one layer, except for the input layer, is fully connected with all others from the previous layer.
Each connection has a weight, which is constantly updated during the optimization process. The optimization
algorithm during the training typically searches for minimum prediction or classification errors according to the
objective (loss) function. In other words, during the training of the network, candidates for weight values are
determined with a stochastic gradient descent algorithm and then updated using a backpropagation of error
algorithm. Error is evaluated by the objective function.

Among reasons for using LSTM networks for energy load prediction are the inert long term (seasonality) and
short-term (daily patterns) of load data in the forecast model. This characteristic also enables flexibility in the
forecast horizon from day-ahead to week or month-ahead predictions. The largest amount of the work was
done for short-term and really short-term predictions with application of various statistical techniques (multiple
regression method, exponential smoothing, stochastic time series), artificial intelligent techniques, knowledge
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based expert systems, and hybrid techniques (Srivastava, Pandey, & Singh, 2016). Comparatively to other
univariate load prediction methods: SARIMA (Chakhchoukh, Panciatici, & Mili, 2011), NARX, SVR (Ko & Lee,
2013), and NNETAR (Hyndman & Athanasopoulos, 2018), the LSTM network had a better forecast accuracy
on the data of building consumption at the 15-minute interval (Zheng, Xu, Zhang, & Li, 2017).

Robust approximations of load consumption patterns using a combination of deep-ANN topologies with the
probabilistic baseline load estimation (Ovdes, Souvent Ovdes, & Ovdes, 2020), will help iIFLEX Assistant to
evaluate the flexibility potential for individual users, in the context of their digital twin, and will allow suggesting
of the effective spread of user’s energy demand based on their own limitation and preferences, price signals
and flexibility demands from the network.

4.2 Combining machine learning with physics-based modelling

Artificial neural networks are universal function approximators, meaning that they can in theory model any
function. Deep ANNSs (i.e., deep learning) have also been very successful in many practical applications
ranging from perception (Krizhevsky, Sutskever, & Hinton, 2017) and natural language processing (Graves,
Mohamed, & Hinton, 2013) to protein folding (OpenAl, 2020). Despite their success, deep learning has also
limitations. For instance, they typically require a lot of data to provide good results. Additionally, even with large
amounts of data, deep learning models have challenges to generalize beyond training data distribution (Bengio
et al., 2019). A key idea in iFLEX is to utilize Al technologies to form accurate digital twins of consumers
(persons and infrastructure) which can be used to predict the response of the system with respect to a different
type of inputs (HVAC setpoints, flexibility signals, etc.). In this situation, it is not possible to cover all possible
situations in the training data, which is a challenge for ANNs and other types of pure data-based approaches.

An alternative approach to model energy systems is to utilize physics. Physics-based models are useful in
situations where there is a limited amount of data on a given system, while the fundamental physics behind
the system are known. For instance, it would not be practical to collect a vast amount of data on how a building
responds to different temperature setpoints, which would be required to train a pure ANN model to forecast
the flexibility provided by the building’s thermal mass. To this end, the approach utilized in iIFLEX is based on
combining physics-based modelling with ANNs. This type of combination of symbolic logic with ANN models
is referred to as Neuro-Symbolic Al (or neurosymbolic Al) in the literature (d’Avila Garcez & Lamb, 2020) and
it is seen as the third wave of Al.

There are many ways to combine physics-based modelling with ANNs. For example, Koponen et al. (Koponen,
Niska, & Mutanen, 2019) studied various combination approaches, including residential hybrid, constraining
models, physically based input forecasts, and ensemble forecasting. Another interesting way to combine ANNs
with physics-based modelling is to utilize physics-based simulation models to generate training data for an
ANN model (De Wilde et al., 2013)(Chou & Bui, 2014)(Turhan, Kazanasmaz, Uygun, Ekmen, & Akkurt, 2014).
This type of approach with an innovative twist is also investigated in the project. The initial results of the work
are published in the paper (Kannari et al., 2021). The key idea in the novel approach is that we use simulated
data from a large pool of buildings to train a single ANN model (in contrast to training building specific ML
models as in previous research). Our hypothesis is that this forces the ML models learn to approximate the
physics of encoded into the simulation model to generalize to new buildings. Another advantage of this
approach is that it makes it possible to forecast buildings energy demand just based on building’s
characteristics and thus makes it possible to use ML models in situations with no energy consumption data of
a specific building. Furthermore, the main benefit of the proposed approach is that once the ANN model has
been trained, we can do not need the original simulator. This is important since it makes it possible to truly
combine the benefits of ML with physics-based modelling. The approach seems promising but requires still
more work to be deployed into the pilot buildings at operational environment (TRL 7). We will continue the
work on this and investigate the possibility to include these approaches for phase 3 deployment.

The approach implemented for phase 2 pilots is based on Neuro-Symbolic Al architecture that combines ANN
models and physics-based models to create a digital twin of the consumer (including the building
infrastructure). The models implemented in phase 2 are presented in more detail in section 5.

4.3 Federated learning
Classical machine learning is done by data scientists by collecting raw data from data owners and training

their model on this data. Since they have access to data it is easy for data scientists to violate data owner’s
privacy.

Federated learning is a technique in machine learning which allows data owners not to reveal any data.
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The idea is very simple: let data owners train our model on their data and then combine those models into a
better one.

Step 1 Step 2 Step 3 Step 4

Bl CSdS EES

Central server Central server Nodes train the Central server pools

chooses a statistical | transmits the initial model locally with model results and

model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

Figure 3: Federated learning basic concepts

4.3.1 Privacy concerns

A major concern and an obvious question to ask seems to be: is it possible to reverse engineer individual
models to get access to some private data after it was trained and sent to us by data owners? Generally
speaking, it's possible. To avoid this, an important idea from differential privacy can be used.

First, we need to understand how to combine different models into a new one in federated learning. It's simple
- we just average over the corresponding weights. Averaging has an important and useful property illustrated
in the following scenario.

Imagine having a web service and wanting to know the average age of users. One way to get the answer is to
simply ask for their age and calculate the average value. But what if age was a sensitive piece of information?
To avoid knowing exact ages, users could be asked to send in their age plus some (uniformly chosen) random
number between -100 and 100 instead. Each such result would tell us little about the exact age of each user,
but when summing them up, random numbers would cancel each other up and we’d be able to calculate the
exact average value (provided there are enough users for statistics to work).

The same idea can be used in federated learning - some random noise is added to each weight by each
individual model before sending it to the data scientist. When combining models, random numbers in weights
cancel each other out and we are still able to get the same combined model as if there was no noise on each
individual weight.

To sum up: by adding noise we make it practically impossible to reverse engineer private data from model,
meanwhile preserving the ability to successfully combine models.

The federated learning with possible applications in some of the project-based solutions is further showcased
and evaluated in Section 5.3.2.5.
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5 Implementation of the digital twin repository

5.1 Overview

The Digital twin repository module documented in this deliverable consists of various models that can be used
to predict the response of the consumption site in different situations. The models are implemented with Python
programming language. Tensorflow 2.0 (Abadi et al., 2016) with Keras API (Chollet, 2018) is used for
implementing the ANN models. The physics-based models are implemented mainly with NumPy (Harris et al.,
2020). The Scikit-learn (Pedregosa et al., 2011) predictive data analytics tool is used for identifying some of
the physical model parameters, as well as, for data clustering. Pandas (McKinney, 2010) is used for timeseries
analysis and processing.

5.2 Automated machine learning pipeline

An automated machine learning (AutoML) (Feurer et al., 2015) pipeline is a toolset that can be used to
automatically generate machine learning-based time-series forecasting models. High level of automation is
required because the benefits obtained from single households or consumers are typically limited and therefore
replication methods with minimal human effort are the key to create sustainable business in flexibility markets.

Developed pipeline can generate multivariate time series forecasting models that can use one or more time-
dependent variables x to forecast future values. Toolset consists of reading and processing historical data,
formatting it into training and validation sets, training the machine learning models and validating their
performance, as seen in the center of Figure 4Error! Reference source not found.. Presented automated
machine learning toolchain contains various ready-made feature engineering pipelines and new pipelines can
be easily added. Data is read either directly from files, where the data is stored in multiple .csv files that are
read and parsed together, or fetched from databases such as oBIX-store using Python-client presented in
D4.2. Other components in the pipeline have also been developed using Python programming language.
Various modelling technologies such as Scikit-Learn, ANN and Tensorflow are already supported in the
pipeline and new methods can be easily added. Models created with automated machine learning pipeline can
be used as a part of digital twins such as household digital twin and building community twin presented in more
detail in the next sections.

Online models of the
. Digital Twin Repository

Mew tailored mode H\’bfid'mOdE"'ng
Digital Twin forthe DTR (ML + Physics)

Building N—_

community —J " Modeling and
Digital Twin A ?Igu_rithms repository
e AutoML | S S VT Stacked Tgiaigiicn)
Booster | methods _-
i Network "
. / == —" Physics-
T | 7 Custom based )
/ ] - "‘,:l [ | ANN models
) Faaturng ~ models 7 e
Preprocessing \ " Scikit- T_B"SU'"U??__ L
e pipeline - leamn _— LightcBM )/
. '::'-/_.-‘l S — F XGBoost ) P

Figure 4. Automated machine learning pipeline.
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5.2.1 Components of the automatic machine learning pipeline

Python-script named train_eval_tool is the main script for creating time-series. Train_eval_tool has three roles.
First, train_eval_tool can train the models and save them into a folder defined by the project. Second, it can
evaluate the trained models. Third, it can deploy the best model (in terms of model performance) into a
separate folder named best_models. Models located in the best_models are the instances of Forecaster class,
which is described in detail in the next sections.

Train_eval_tool is configured using models_conf configuration file. Configuration options include:

1)

2)

3)

4)

5)

Targets: Target of the forecast. Typically, in this case it is either district heating power or electricity
power, but the tool is not limited to these. Currently, only one target can be trained and evaluated at
time.

Forecast options: Lead time describes how many timesteps (data frequency) are before the first
forecast period. Forecast length defines the length of the forecast in data frequency timesteps. Update
rate defines how often the new forecast is made. Currently models created with the pipeline update
their forecast in each timestep. Lead time and forecast length can be freely selected. Forecast options
are visualized in Figure 5.

Features: Features can be freely customized. However, automated machine learning pipeline already
supports various ready-made features that can be utilized. Lagged target (i.e. target value in prior
time steps) can be used as a feature. Pipeline makes it possible to use 0-N number of last target
values. Weekday is a predefined feature that presents the day of the week in OneHotEncoded format.
Holiday feature describes if a specific date is a government-designated holiday. Temperature feature
presents the current outdoor temperature. Hour feature is current hour of the day. Finally, control
feature describes if building heating level has been overridden either by the automatic controller or
through manual control of the heating level. Figure 6 presents some example features in the
dataframe.

Pipelines: Pipelines are a different kind of preprocessing and modeling pipelines Currently automatic
machine learning pipeline supports the following pipelines: TF-FFNN_single (Tensorflow Feed
Forward Neural Network) with a single input for all the input features, TF-FFNN_multi with separate
inputs for each input feature, MLP_single (multilayer perceptron regressor) with a single input for all
the input features, MLP_multi with separate inputs for each input feature, SVR (Support vector
regression), Linear (Linear regression)

Baselines: Simple baseline models to compare trained models in the evaluation. Currently, pipeline
supports Mean (Mean value of the values), Lag_4 (using 4 previous target values) and Lag_24 (using
24 previous target values)

Document version: 1.0 Page 13 of 61 Submission date: 2021-06-14



IFLEX D3.2 Revised hybrid-modelling module

ole Leadtime | Forecast length N

02-Jan 03-Jan
2020

Figure 5: Time series forecasting terminology

dr |

lagged_target holiday  weekday hour  lagged_target_-12 lagged_target -11 lagged_target_-10 lagged_target -9 lagged_target -8 lagged_target -7 lagged_target -6 lagged_target -5 lagged_target -4 lagged_target -3 lagged_target -2 lagged_target -1

Target to be
forecasted

Figure 6: Features in the dataframe.

Automatic forecasting pipeline produces Forecaster class that can be used in evaluation and online
forecasting. It supports two different prediction output formats, namely multi-output format and single output
format. Multi-output format is the default output format of the Forecaster class and it is implemented as a
Pandas Dataframe. In this output format, each dataframe row is indexed with Datetimelndex and contains
multiple forecasts for the timestep. For example, using forecast length of 24 hours, each row contains 24
different forecasts made at different times. Figure 7 presents the multi-output format in Pandas dataframe. In
this figure, rows are different timesteps and columns represent forecasts made at different times i.e.
forecast_13 is a forecast made 13 hours ago.
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forecast_dr (-]
Forecast 12 forecast_13 forecast, 14 forecast 15 forecast 16 forecast 17 forecast 18 forecast 19 forecast 20 forecast 21 forecast 22 forecast 23 forecast 24 forecast 25 forecast 26 forecast 27 forecast 28 forecast 29 forecast 30 forecast 31 forecast 32 forecast 33 fore
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Figure 7: Forecaster class multi-output format.

Single-output format is a Forecaster class output and is implemented as a Pandas Series and it is used for
online forecasting. In this format, each row contains just a single forecast. Figure 8 presents the single-output
format in Pandas series.

forecast_dFf (]

forecast
2020-01-02 00:00:00 SEEATOS NN
2020-01-02 01:00:00 [HSFOBETNN
2020-01-02 02:00:00 HTEETIENN
2020-01-02 03:00:00 HSHSTZENNN
2020-01-02 04:00:00 USISTESONINN
2020-01-02 05:00:00 [HHBSSOSNNNNN
2020-01-02 06:00:00 HEISAZOENN
2020-01-02 07:00:00 [S5S20870
2020-01-02 08:00:00 SEHZASSNNN
2020-01-02 09:00:00 SASOS00NNN
2020-01-02 10:00:00 STB2SAENN
2020-01-02 11:00:00 SOISEOSONN
2020-01-02 12:00:00 SOSSSEENNNNN
2020-01-02 13:00:00 HESEO2S NN
2020-01-02 14:00:00 HSIGISBS I
2020-01-02 15:00:00 ESTSTENNNN
2020-01-02 16:00:00 SOSTASSNNNN
2020-01-02 17:00:00 SHA26SS N
2020-01-02 18:00:00 [SHIO2EETNN
2020-01-02 19:00:00 [SSTAGAS NN
2020-01-02 20:00:00 SHSIESZ
2020-01-02 21:00:00 299160
2020-01-02 22:00:00 S2ESTTANNN
2020-01-02 23:00:00 SESTISNN

Figure 8: Forecaster class single output format.
5.3 Phase 2 models

The digital twin repository implemented consists of two types of digital twins: Digital twin of an apartment
building community and a digital twin for a household. The building community digital twin, represented in
section 5.3.1, consists of models for the following purposes: district heating demand forecasting, electricity
demand forecasting, heating demand forecasting and indoor temperature modelling. The household digital
twin is presented in section 5.3.2. It consists of prosumer load and flexibility forecasting models.

5.3.1 Digital twins for a building community

The Digital Twin of the building community is designed to model the baseline load profiles and flexibility of a
building community (apartment building) that has a central heating and ventilation system providing flexibility
for the consumer. The building has a hybrid heating system where the heat is provided with district heating
(DH) and an exhaust air heat pump. This heating system supplies heat both for space heating and for heating
of the domestic hot water. Only space heating is used for flexibility because we do not want to compromise
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the comfort of the residents. Figure 9 depicts the mapping between the Digital Twin, measured (and non-
measured) parameters and the residents of the building community.

Models

Models Models

Models

B i Electricity consumptlon

_consu mption

(. EIevators )\ Ventllat|on W “Heat N
~ ~o o~~~ \_pump_/

- ‘/,7-\ \"/,_ = Models

. "Domestic ~ ) ,
\ hotwater

Heatmg ,

(\ nghtmg / e ‘Common’ Y
p e \_ Sauna //

~

Influence

\ Ianuence

Residents Constrain for
flexibility
i &——Influence T
comfort

Figure 9: Conceptual representation of the interdependencies among the Digital Twin, measured parameters (green),
non-measured parameters (blue) and the residents of the building community

The green colour indicates the parameters for which we have direct measurements available. As it can be
seen, the total DH and electricity consumption are measured, as well as the average thermal comfort of the
residents. The behaviour of the residents naturally effects both the DH (especially domestic hot water) and the
electricity consumption (especially elevators and Sauna). The flexible asset to be modelled in phase 1, is the
apartment heating, which is provided with a combination of DH and electricity (exhaust heat pump). The main
constraint for the flexibility is the thermal comfort of the residents. The average temperature should not drop
below 21.0 Celsius degree (short periods below 21.0 are allowed but should be corrected as soon as possible).
Two different approaches for implementing the Digital Twin are studied in this phase of the project. Section 0
describes that approach 1, that is a minor update to the hybrid approach represented in the D3.1. In this
approach machine learning is used for modelling the baseline consumption and physics-inspired hybrid models
are used to modify the baseline energy consumption according to the law of energy conversion. Section 5.3.1.2
presents a new hybrid approach that utilises machine learning for modelling also the energy response to
control signals. Both approaches use a simple physics-based hybrid model to model the indoor temperature
during the demand response events.

In both approaches the Digital Twins use the same forecasting length, lead time, forecasting frequency and
sampling rate parameters depicted below:

e Forecast length: 24 h
e Leadtime: 0 min
e Data sampling rate: 60 min

e Forecast frequency: 60 min

5.3.1.1 Approach 1l

The models of the building community Digital Twin in the approach 1 are presented in Figure 10. The
Digital Twin consist of two main models: energy demand model and the indoor temperature model.
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Figure 10: Conceptual view of the digital twin for the building community (approach 1).

The indoor temperature model predicts the average indoor temperature during demand response events. This
model is relatively simple physics-based model with two parameters learned from data. The model is presented

in more detail in section 5.3.1.1.1

The energy demand model produces electricity and district heating consumption forecast. The energy demand
model is a hybrid model that consists of three main models: DH baseline model, electricity baseline model,
and heating system model. The DH baseline and electricity baseline models are implemented purely with ML
techniques. Section 5.3.1.1.2 describes the design and implementation of the models in more detail. The
heating system model is a physics-inspired model with several parameters learned from data. This model is

represented in section 5.3.1.1.3.

A formal representation of the energy demand model is presented in equations (1) and (2). Equation (1)
represents the district heating output and equation (2) the electricity output.

Edhase-l-Qb’ a=0
Ean(@ = { e S 0T &)

E, 1 (a) = { Eelebase’ a=0
e Eelebase + EhPa:l - EhPa:O’ a=1

Qdemanda=1 - QhPa=1’

()

The a is the control signal (@ = 1 means heating is constrained, and a = 0 means normal operation). The Eg,
and E,,,  are the baseline energy consumptions provided by the machine learning models represented in
section 5.3.1.1.2. The other parameters are provided by the heating system model. These parameters include:

e Q- Heating payback representing the recoil effect (law of energy conversion) once the heating is
returned to normal set point,

o . Total heating demand (space heating + domestic hot water) when the heating is

Qdemanda=1
constrained.
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. tha:1: Heat pump energy production during the DR event (heating constrained).
o By - Heat pump electricity consumption when the heating is not constrained.

e E, _,: Heat pump electricity consumption when the heating is constrained.

5.3.1.1.1  Indoor temperature model

The purpose of this model is to predict the indoor temperature when the amount of energy used for heating is
limited. In the first phase, we assume that the heating energy is reduced to zero during DR events. This model
thus predicts the temporal dimension of the flexibility (i.e., how many minutes can the heating be turned off).
The modelling is based on applying Newton’s law of cooling, represented in equation (3).

Q = hA(T — T,p,) = hAAT (3)

where Q is the rate of heat transfer out of the body (SI unit: watt), h is the heat transfer coefficient (Sl unit:
W/m?K), and A is the heat transfer surface area (S| unit: m?).

In the simple modelling approach, the building is treated as a lumped capacitance object with a uniform internal
temperature T. As presented in equation (4), the internal energy U stored into the building can be presented
in terms of this uniform temperature, the heat capacitance C of the building, and a reference temperature at
which the internal energy is zero.

U=C(T- Tref) (4)
By differentiating U with respect to time t and applying the first law of thermodynamics we get:
dU  _dT(b)
——=C——>=—0Q (5)
dt dt

The heat transfer Q out of the building can be represented by Newton’s law of cooling, and thus by combining
(3) and (5), we get:

dT(t hA(T — T,.p,) 1
d—(t): —%Z —;(T— Teny) 6)
The solution to this differential equation is:
T(t) = Teny + (T(0) — Tepp)e™"/" (7)

where T = % => % is the time constant of the building cooling. To calculate the time constant, we need to

estimate the heat loss coefficient H and the thermal mass C of the building. It should be noted that with longer
forecasts the outdoor temperature, T,,,,,, can change. In this case the forecast for the indoor temperature needs
to be executed in parts while updating the T,,,,, for each time period.

Section 5.1.1.5 describes how the heat loss coefficient and thermal capacitance parameters of the model are
identified.

5.3.1.1.2 Baseline load forecasting models

The baseline load forecasting models consist of DH baseline and electricity baseline models. These total
models are implemented with pure machine learning methods. This is because of two reasons. First, the
behaviour of residents has a big impact on these total consumptions (e.g., how water demand, elevators,
common sauna, also influences the space heating) which makes the ML methods a natural choice. Second,
there is a large amount of hourly data available about the building’s district heating and electricity consumption
which makes it easy to develop accurate ML methods for these tasks. Root means square error (RMSE) is
(equation 8) used as the error metric for evaluating the models. The results are also normalized with respect
to minimum and maximum values, as formulated in equation (9) to provide a more easily interpretable
percentual metric for the error.
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RMSE = \/%Z?:1(Yi - ¥)? ®

RMSE
NRMSE = —8 C))

Ymax — Ymin

Different machine learning models, including linear regression, ANN, and support vector regression were
trained and evaluated for the given task with different hyperparameters and features using the automated
modelling pipeline presented in section 5.2. A two-layer Artificial Neural Network with the following features
was the best performing model in both tasks:

e Past energy consumption from the last week (input size: 168): Missing values in the data are
replicated with mean value and the input is then scaled between 0, and 1.

o Weekday of the target period, represented separately for each hour (input size: 24). The input is one-
hot encoded before.

e Hour of the target period, represented separately for each hour (input size: 24). The input is scaled
between 0 and 1.

e Flag indicating weather, represented separately for each hour (input size: 24).

e Outdoor temperature for the target period (input size: 24). Weather forecast is utilized instead of
measured values in the online version of the model. Missing values in the data are replicated with
mean values and the input is then scaled between 0, and 1.

The average errors in the test set were 14.4 kW and 2.1 kW for DH and electricity respectively. The
corresponding NRMSE errors were 7.8% and 7.6% for DH and electricity, respectively. Figure 11 and Figure
12 illustrate the electricity and district heating forecasts for sample periods during the pre-piloting phase.
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Figure 11: 24-hour electricity baseline load forecasts. Measured values are represented in orange and forecasts in blue.
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Figure 12: 24-hour district heating baseline load forecasts. Measured values are represented in orange and forecasts in
blue.

As can be seen from the results the model works quite well for the power consumption which is more stable.
For district heating the behaviour seems slightly more unpredictable based on the figures (i.e., there are some

peaks that are probably caused by irregular domestic hot water usage in the pilot building). Although the
normalized error is still similar to the electricity.

5.3.1.1.3 Heating system model

The heating system model is designed to predict the response of the heating system during and after a DR
event. It is used for modifying the baseline consumption forecast of the machine learning models as illustrated
in equations (1) and (2). The outputs of the heating system model are the following:

*  Quemand,_, - Total heating demand (space heating + domestic hot water) when the heating is

constrained. The model is presented in equation (10).
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o Eyp - Heat pump electricity consumption when the heating is not constrained. This model is
represented in the equation (11).

» E, _ - Heatpump electricity consumption when the heating is constrained. This model is represented
in equation (12).

° th 71: Heat pump energy production during the DR event (heating constrained). This model is
represented in equation (13).

e Q,: Heating payback represents the recoil effect (law of energy conversion) once the heating is
returned to the normal set point. This model is represented in the equation (14).

Next how the model produces these outputs is briefly elaborated.

Qdemanda:1 = theating + thw (10)

The u is a learned parameter that specifies the portion of the heating demand that remains when the heating
is constrained during the demand response event. Ideally the u is zero (i.e., heating is fully turned off), but in
practice the value 0.35 matches the data collected during the pre-pilot phase. Qpeqting IS the space heating
demand represented in equation (16). @, , is the domestic hot water demand presented in equation (17).

tha:

EhPa:o = COPO 11
tha:

Ehpa=1 = Copl (12)

The heat pump’s coefficient of performance is a common parameter in equations (11) and (12). The COP
depends on the temperature delta but an average value (3.3) identified during the pre-piloting is used in this
model. The heat pump’s heat production is provided by equations (13) and (14).

tha=1 = min(th_max , Qdemanda=1 ) (13)
th_max is the maximum heat production of the heat pump. This parameter is learned from data (50 kWh was

identified based on the pre-piloting period). Q,,....na . is given by the equation (10).
tha=0 = th_max (14)

The heat pump’s energy production is not measured separately which makes it difficult to estimate especially
during the normal operation. The assumption presented by the equation (14) is that the heat pump is producing
maximum power during normal operation. This assumption is valid for most of the time because the heating
system is configured so that the heat pump is prioritized over district heating (i.e., the assumption is only valid
when the total space heating and DHW heating demand is lower than the heat pump maximum production.).
This could happen in the summertime, but the heat pump is turned off during summer period, because the
district heating price drops dramatically during that period.

Qpb = min(Qdebt' Qpb_max) (15)

According to the law of energy conversion the heating system needs to compensate (payback) the energy
deduced during the demand response event. @, specified the current heat debt. It is calculated as presented
in (18). Qup_max represents the maximum payback energy during the sampling period (60-min). This parameter
is identified from data.

Qheating = HX Toyy + PTO (16)

The space heating demand model is presented in equation (16). The module has the following two parameters
that are identified from data: H, and Py, . The building’s heat loss co-efficient (H) and power demand at zero
Celsius degrees (Pr,) are identified from data as represented in section 5.3.1.1.5.

Qanw = Edhbase + tha=0 - Qheating a7
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The heating demand for domestic hot water is presented in equation (17). It is calculated based on the DH
baseline forecast (Egy, . ), heat pump energy generation in normal mode (th 70) and the heating demand

(Qheating)'

Qdebt - Qpb' a=0

18
Qdebt + pXuX Qheating' a=1 ( )

Qaepe = {

Equation (18) presents how the heat debt of the building is calculated. When heating is not constrained (a =
0) the heat debt is reduced by the payback amount (Q,,). When the heating is constrained, the debt is

increased by the amount specified by p X u X Qheating' Here the parameter p specifies the portion of energy

that needs to be paid back. It is identified from data. In an ideal system the value would be 1.0. Here a value
of 0.35 was identified based on the control testing.

5.3.1.1.4 Parameter identification for physics-based models

Energy signature method

The energy signature (ES) method is a simple method for estimating the heat loss coefficient, H, of a building.
The method is based on modelling the linear relationship between heat consumption and outdoor temperature.
Typically, two linear equations are fitted to the data: one for the heating season and one for the intermediate
season. Error! Reference source not found. illustrates an example of the ES method.

(] A
P[W]
o
o
Heating
season
(J
Intermediate
Tb  season
Py
0 T[C’]

Figure 13: Example of the energy signature method.

Tb refers to the temperature value between the heating season and the intermediate season. Py is the power
used for domestic hot water (DHW) and domestic hot water circulation (DHWC). The heat loss coefficient of
the building is the gradient of the line fitted to the heating season.

An important part of the ES method is sampling the data into reasonable resolutions so that heating dynamics
are averaged out. Daily resolution was selected for the apartment building to be utilized in the pilot.

Error! Reference source not found. illustrates the ES plots for years 2015 - 2020. An extra challenge for the
case study studied in the project is that heating in the apartment building is supplied by two sources: district
heating and heat pump. To further complicate the challenge, the heat pump has been operating only part time
due to technical issues. Because of this, two different regression lines can be identified from the heating
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season: one with the heat pump and one without the heat pump. The heat pump has been also turned off
during summer times because the price of district heating is so low that it is cheaper to use it for heating.

Data from year 2018 was used for fitting the regression line (and evaluating the building heat loss coefficient).
In order to fit a regression line to the heating season data, the periods in which the heat pump was off and on
have to be separated. To automate this a machine learning clustering algorithm, called a Gaussian mixture
model, was utilized. In practice the clustering was implemented with scikit-learn. StandardScaler of scikit-learn
was used for scaling the data before clustering. Only data below 10.0 Celsius degree (heating season) was
utilized in the clustering. Error! Reference source not found. illustrates the results of the clustering as well
as the two lines fitted to the heating season data.

The heat loss coefficient is the gradient of the line when the heat pump has been off. In this case the gradients
are almost identical which indicates that the heat pump output is independent of the outdoor temperature. The
H is -4.14 KW/C° and the linear model of the space heating (DH) is presented in equation (19):

kW
Pheating = —4.14 [F] * Topy + 66.0 [kKW] (19)
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Figure 14: Daily average power versus the outdoor temperature for years 2015 - 2020.
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Figure 15: Application of the energy signature method for year 2018 by fitting separate lines for periods in which the heat
pump has been on (orange) and off (blue). Data was clustered with a Gaussian mixture model algorithm.

Estimating the thermal capacitance of the building

The thermal mass (capacitance) of the building, C, can be calculated for example as defined in standards
SFS-EN I1SO 13786 or SFS-EN ISO 13790. High detail structural information is needed to perform detailed
calculation of a building’s thermal capacitance. The approach applied in the first phase modelling is based on
utilizing typical values calculated for different building types, and fine-tuning these values based on data
obtained from actual experiments. Error! Reference source not found. - Error! Reference source not
found. present thermal capacitance values for different building and structure types that are typical in Finland.

Table 1: Typical thermal capacitance values per conditioned floor area for detached houses in Finland, including the

furniture.
Structure type Example structures C/A [Wh/(m?K)]
Light All walls and floors are lightweight materials. 40
Medium | Base floor is concrete, all other walls and floors are lightweight 70
materials.
Medium I Exterior wall is concrete brick or massive timber, base floor is 110
concrete and other floors lightweight materials.
Heavy Wallls are concrete or concrete bricks. Floors are concrete. 200

Table 2: Typical thermal capacitance values per conditioned floor area for apartment buildings in Finland, including the
furniture.

Light Base floor is concrete, all other walls and floors are 40
lightweight materials.

Medium Wallls are lightweight materials. Floors are concrete. 160

Heavy Floors and walls are concrete. 220

Table 3: Typical thermal capacitance values per conditioned floor area for office buildings in Finland, including the
furniture.

Light Base floor is concrete, all other walls and floors are 70
lightweight materials.

Medium Walls are lightweight materials. Floors are concrete. 110

Heavy Floors and walls are concrete. 160
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The pilot building is an apartment building with medium structure type. So 160 Wh/(m?K) is used as an estimate
for C/A. The floor area, A, of the building is 4500 m2, which means that the initial estimate for C is 720 kWh/K.
This parameter can be recalibrated based on measurements obtained from the building. The equation used
for identification of C from data can be derived from the equation (6). Below the equation is represented in a

format where the dz—(tt) is approximated with temperature change over 60 minutes (i.e., during a DR event).
H
AT = — I (T — T,pp) (20)
From this we can solve the building’s heat capacity as presented in equation (21).
T — Tenv
C=—-H—— 21
AT (21)

H is -4.14 KW/C° as presented above. AT is the average drop in indoor temperature during an hour of DR
event where heating is constrained. T — T,,,, represents the difference between indoor and outdoor

temperatures. Average difference during the DR event is used for evaluating the C. Based on DR tests done
in the pilot building between November 2021 and June 2021, corrected value for the C can be calculated. In
those tests, indoor temperature measurements from seven different locations of the building were used. Mean
value for the C based on DR tests was 390 kWh/K with standard deviation of 187 kWh/K.

5.3.1.1.5 Integrated digital twin of the building community

The aforementioned models comprising the digital twin of the building community are implemented with Python
programming language. The model takes as input the current indoor temperature, as well as the outdoor
temperature and control commands (on/off) for the period to be forecasted. The outputs of the model include
the electricity and DH consumed for space heating as well as the indoor temperature for the forecast period.
Figure 16 illustrates three example forecasts evaluated against the data collected in the pre-pilot phase. In
each example, a DR event is executed so that all the models of the digital twin need to be used (i.e., the
physics models are used in addition to the baseline load profiles produced by the machine learning models).
In the first two experiments, a single DR event is executed at 7:00-8:00 and 8:00-09:00, respectively. In the
third example, two events are executed during the 24-hour forecast window at 7:00-8:00 and 12:00-13:00.

The left side of the column represents the district heating consumption and forecast. It can be seen that there
is a clear drop in the DR consumption during the times when the DR event was executed. The model predicts
the performance quite well also during the DR event. For the electricity consumption, there is no identifiable
impact in the energy consumption caused by the DR event. This is because the heat pump starts to serve the
DHW heating once the space heating is constrained. The model seems to predict this behaviour also well.
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Figure 16: Forecasted response of the building energy consumption during a day with a DR event. The district heating
forecast and consumption is presented in the left column. The electricity consumption of the building is represented on
the right. The forecast is represented in blue and measured energy consumption in orange.

5.3.1.2 Approach 2

The above-mentioned approach 1 uses machine learning models to calculate baseline consumption for the
both district heating and electricity and combines it with a physics-based model to model the behaviour of the
building energy consumption during and after a demand response event. This kind of approach was selected
mainly because several years of data about energy consumption during the building normal operation was
available, so the baseline consumption could be modelled using accurate machine learning methods.
However, before the start of the iIFLEX piloting, no demand response tests were done in the pilot building.
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Therefore, machine learning could not be used to forecast the behaviour of energy consumption during and
after demand response tests and that is why these periods were complemented with physics-based models
described in the previous section to model e.g. the rebound effect and how the district heating and electricity
consumption behaves during demand response action.

During the phase 1, demand response control events have been executed several times of the week on
different times of the day. Figure 17Error! Reference source not found. presents an example how district
heating and electricity reacts of the district heating control test that has been executed between 10:00 — 11:00
9.2.2022. By running series of demand response tests, dataset now contains also samples from the periods,
where HVAC system is either providing flexibility (space heating is turned off) or recovering from demand
response events after space heating is turned on again.

2022-02-09T00:00:00+00:00
2022-02-09T23:59:00+00:00

District heating and electricity

L 5]
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J — District heating power
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Figure 17. Demand response test on February 2022

Using the dataset collected during pre-pilot phase of the project, an approach (approach 2) to model building
community energy system has been developed. Conceptual view of this approach is presented in Figure 18.
Two main aspects of this approach are the following:

e District heating power and electricity power are fully modelled with machine learning. District heating
consumption includes energy required to generate heating for the building and also heating of the
domestic hot water. Behaviour of the residents has significant effect on the usage of the water and
also on the required heating energy. For example depending the time of the day, taking a shower
creates significant need for domestic hot water. Electricity consumption includes all the energy usage
in shared spaces of the apartment building, where the most significant power consuption comes from
heat pump, ventilation, sauna, lightning and elevators

¢ Indoor temperature during the demand response event is modelled using physics based greybox
modelling, in the same way as the approach 1.
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Figure 18. Conceptual view of the digital twin for the building community (approach 2).

District heating and electricity models are created using automated machine learning pipeline presented in the
section 5.2. Using this method, separate models are created for the targets i.e. district heating power and
electricity power. Lead time (timesteps (data frequency) before the first forecast period) has been 0 hours and
forecast length (the length of the forecast in data frequency timesteps) has been 24 hours. Various input
features have been tested and the following presents one of the most promising input parameters:

lagged target (168 historical values of the target, integer): Historical values of either district heating or
electricity power measurements,

weekday (24 future values, one for each forecasted step, OneHotEncoded): day of the week
hour (24 future values, one for each forecasted step, integer): Current hour of the day
temp(24 future values, one for each forecasted step, 8 historical values, integer): outdoor temperature

holiday(24 future values, one for each forecasted step integer): government-designated holiday,
True/False value

control (24 future values, one for each forecasted step ,4 historical values, integer): presents the past
control singals. Control point deviates the heating circuit water input temperature level so that no
heating is provided to the heating system. 4 step window size has been tested in order to model the
reaction of the building heating system during the demand response event and also model the rebound
effect

Figure 19 illustrates the internal architecture of the model. Using above-mentioned input and output
parameters, output size of the model is 24 and input size is 444. Machine learning model predicts both the
baseline consumption for district heating and electricity, but also the down flexibility for both targets. Baseline
consumption is calculated by setting control input to 100 and possible flexibility is calculated by setting the
control input to 0. Indoor temperature model is developed originally for the approach 1 and is used also to
calculate how long demand response actions can be made.
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input: | [(None, 444)]
output: | [(None, 444)]

dense_input: InputLayer

Y
input: | (None, 444)

output: | (None, 32)

'

input: | (None, 32)

dense: Dense

dense 1: Dense

output: | (None, 32)

'

input: | (None, 32)

dense 2: Dense
output: | (None, 24)

Figure 19: Model architecture

5.3.2 Digital twin of a household

The digital twin of a household consists in this initial phase of four models: a household thermal model, a
household electricity model, a household flexibility model and an occupant model. Conceptual relationships
between the models, measured data and household residents are presented in Figure 20. Presented models
are build based on the measured data and their historical values. The models have some clear constraints
related to household comfort influenced by the household residents. Some of the modelling relationships are
denoted with dashed lines, they will be modelled in the second piloting phase. The digital twin model is subject
for improvements in the next project phases.
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Figure 20: Household modelling, models in grey, measured parameters in green, constrains in orange, non-measured
parameters in blue. Full arrows represent phase one focus.

The household thermal model aims to evaluate the thermal response of the household and the potential of the
household thermal lag. Heating and cooling can present an important part of energy consumption of a typical
household. When present in electricity consumption, they are roughly proportional to the difference between
indoor and outdoor temperature. The thermal lag tells how the energy flows between the inside of the
household and the outside. The lag depends on physical details of the thermal mass of a building or an
apartment of the household. Thermal mass has the effect of dampening and delaying the transmission of heat
and cold from the outside. Depending on the building characteristics, the delay can vary between a few hours
to more than a day.

The household electricity model defines how the electricity in the household will be consumed and generated,
if generation is present, in the future. These two models are essential for other models building. Both the
consumption and generation are dependent on weather data. The prediction depends on weather data
prediction which is assumed to be provided from external data sources.

The flexibility models define how much flexibility is available at a certain time period in the household for
specific flexibility provisioning. Flexibility provisioning may be divided between self-provisioning and
provisioning to external parties, for example, for participation in demand response (DR) programmes.
Modelling of external provisioning can be based on information on participation in previous DR programmes
or based on aggregation of household, through HEMS controlled appliances. Three models will be considered:
self-flexibility, aimed at balancing between self generation and consumption, price flexibility, telling how the
household responds in general to DR price signals and aggregated flexibility, defining an aggregated response
of the household through home energy management system (HEMS) control. The self-flexibility can be defined
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on generation and consumption data, price-based flexibility on the consumption forecast and past price events
behaviour, and the aggregated flexibility on usage potential of the controlled appliances through the household
HEMS.

Many large loads are still under direct household occupants’ control like hair-dryers, blenders, TVs, ovens, etc.
Such loads are denoted with other loads in Figure 20. Also, electric vehicles are considered under direct control
though they could be controlled through automation. Defining an occupant behaviour model is a complex task
due to the inherent unpredictability of the human behaviour. A simpler substitute can be defined based on
pattern of usage within days, days of a week or seasons.

In the following sections a baseline for the introduced models will be presented. Some of the models will be
addressed only at later piloting stages.

5.3.2.1 Data used for models building in the first phase
The data used for modelling in the first phase is of three sources:

- Smart metering data collected in a Critical Peak national project (KKT) in years 2017 and 2018. The
data belongs to more than 700 pilot users and more than 14.000 control users in Celje region. The
region covers more than 200 transformer stations. The data is accompanied with weather data in the
same period. The smart metering data is provided on 15-minute intervals, the weather data is on 1h
intervals. For the weather data temperature, radiation and precipitation measurements are provided,

- Smart metering data being collected in Use it Wisely (UiW) national project from autumn in year 2019
till end of year 2021. The data belongs to more the 700 pilot users and more then 10.000 control users
in Celje region. The region covers more than 200 transformer stations. Besides the residential
consumption also the generation at the prosumers is provided. The data includes industrial consumers
at the substations as well. The region and the users are not the same as in the KKT project. The data
is accompanied by weather data of same characteristics as in KKT project,

- HEMS data, collected at first phase pilot users. The piloting is planned to start in autumn and at that
time more information will be available on which data will be collected and at which sampling rate.

5.3.2.2 Prosumer flexibility forecasting

The starting point of flexibility forecasting is the prediction of the response of prosumers to a price signal. The
model which will be presented is a generalization of a price flexibility model as denoted in Figure 20.

The flexibility based on price signals is defined as the ability of the consumers to adapt their consumption
according to the price of the energy they are consuming. The approach estimates harvested flexibility during
a flexibility event. The flexibility event is defined as a time interval when an aggregator signals a price change
— positive or negative deviation from standard price. Deviations are considered from the aggregator point of
view. Positive deviation introduces higher price of energy and negative lower price. The higher price periods
aim at lowering the peak in the period and lower price periods increasing the consumption at the period.

The modelling is based on past flexibility events. In 2017 and 2018 Elektro Celje (ELE), SCOM and JSI have
participated in a national project called “Critical peak tariff’ (CPT). The project has been granted by The Energy
Agency in the Slovenian energy market! has introduced a positive critical peak tariff (PKKT) as an incentive
for consumers. At the time of the PKKT the network fee was up almost 10-fold to normal tariffs and in the rest
of the time was a bit lower — on the end, for both tariffs combined, the consumers were paying less than they
would normally do in the same period. Over 700 households participated in the pilot. The pilot prepared 42
flexibility events which have been announced a day ahead based on consumption forecast of 209 transformer
stations, participating in the pilot. The events were on average one hour long but some experimentation has
been done with two-hour events. The modelling will be updated based on currently running project “Use it
Wisely” (UiW) results. The project involves the same partners as the previous one. However, the PKKT
incentive of the UiW supports a “negative” incentive as well — NKKT. During the NKKT periods, the network
fee is much lower than normal. 3650 hours are available for NKKT and 100 hours for PKKT per year. Roughly
the same number of households participates in the project as before, while their topological spread is similar
— but different — to the CPT project.

The data used as input for the flexibility modelling is aligned across flexibility events. The events used as input
lasted for one hour or two hours. Events are scheduled during different times, depending on a time of the year.
For this reason, they were aligned at event start including with an hour and a half before and after one hour

! See the agency home page for more details: https://agen-rs.si/web/en/about-the-agency
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event and an hour before and after two hours events. Combined, all events were four hours long. Sample two-
hour event is presented in Figure 21. The flexibility event took place between 18:15 and 20:15. The event is
marked with 1 in event column and intervals before and after events are marked with 0. All aligned events
have the same event index.

Sample event event_index event_day

2018-03-22 17:15:00
2018-03-22 17:30:00
2018-03-22 17:45:00
2018-03-22 18:00:00
2018-03-22 18:15:00
2018-03-22 18:30:00
2018-03-22 18:45:00
2018-03-22 19:00:00
2018-03-22 19:15:00
2018-03-22 19:30:00
2018-03-22 19:45:00
2018-03-22 20:00:00
2018-03-22 20:15:00
2018-03-22 20:30:00
2018-03-22 20:45:00
2018-03-22 21:00:00

69.0
70.0
71.0
72.0
73.0
74.0
75.0
76.0
77.0
78.0
79.0
80.0
81.0
82.0
83.0
84.0

0

0
0
0

—

0
0
0
0

1
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Figure 21: Sample flexibility event data

1
1
1

Flexibility forecast is done based on past flexibility events, consumer response and weather data. For the
forecast a black box model is used. Linear, multilinear, Deep Neural Network (DNN) (LeCun, Bengio, & Hinton,
2015), Recurrent Neural Network (RNN) (Jordan, 1986) or gradient boosted tree (Natekin & Knoll, 2013) based
models have been evaluated to model the flexibility relationship.

A simple linear model is presented in Figure 22. A dense neural network node presents a base for the linear
model. Applying temperature and consumption data of the events’ time slots to the model gives the results in
Figure 23. From the figure we can recognise the thermal response of the households, indicating both the
heating part in the left-hand side of the figure and the cooling dependency at temperatures higher than 23°C.
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Figure 22: Simple linear model
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Figure 23: Linear regression and temperature dependency of event consumptions

An example Long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) stacked neural network
model used is presented in Figure 24. The neural network uses dense pre-layer and five 128 nodes LSTM
layers stacked one on another and connected in a ResNET (He, Zhang, Ren, & Sun, 2016) manner to prevent
a vanishing gradient problem. Each LSTM layer is accompanied with a dropout layer.

For the extended flexibility events the consumption has been forecasted with a chosen model based on the
data outside the events. For different models, the predictions are given in Figure 25. The black line presents
the real consumption of the aligned events. The blue and red line present LSTM model, presented in Figure
24, prediction. The yellow and green lines are XGboost (Chen & Guestrin, 2016) predictions, green one is
parameter optimized.

It can be seen from Figure 25 that the XGBoost prediction seems to be superior to LSTM model one. When
the right model is selected, the flexibility can be calculated as a difference between predicted and real
consumption on the flexibility events. Based on this data, in a similar manner as before, the new flexibility
events and their flexibility can be predicted. Flexibility prediction is limited only to weather forecast availability.
While doing the prediction, care needs to be taken to take into the account the number of consumers
participating in the event. The approximate time of previous events should be taken into account for new
events.

It has to be decided how to progress from common flexibility prediction to individual prosumer flexibility
prediction. At first, new data from UiW project will be evaluated and the data used for modelling will be updated.
Besides the PKKT incentive, also the NKKT incentive data will be evaluated in a similar manner to see how
cheaper networking fees stimulate higher consumption in off peak hours. Then, the flexibility of an individual
will be evaluated over all PKKT and NKKT events. The model will be built in a similar manner to common
flexibility prediction models and evaluated on the events data. The model will be confirmed by aggregated
models as well for the prosumers with HEMS systems available, already in the first phase. The price-based
model is important since it allows to evaluate the flexibility of the prosumers on smart metering data only.
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Figure 25: Aggregated and averaged flexibility response, multiple models
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5.3.2.3 Prosumer load and generation forecasting

Prosumer load and generation forecasting is one of the core services expected from iFLEX Assistant. The load
forecast enables to assess implicit flexibility potential as has been discussed in 5.3.2.2 so it can be reported
to flexibility services operators, allows for more optimal automation control and management, helps the end
user to decide which flexibility services to participate in, etc. The generation forecasting helps to plan how to
use self-flexibility to balance the household own consumption as well as to plan future consumption potentials.

2500
— all
— check prediction
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Figure 26: Stacked LSTM model consumption prediction

The baseline services already provided are based on forecasting the consumption of a group of pilot users in
the CPT and UiW project. The consumption of more than 750 users is regularly forecasted for a week in
advance to be able to select optimal days and time intervals for the flexibility events. For the week forecast,
the key input parameter is the time of expected peak so that the flexibility event will match the peak. On overall
year horizon it would be optimal to shave the highest peaks in the network for the KKT incentive to have the

best effect. For this purpose, also the height and shape of the peak is important so the right peaks could be
selected for shaving.

Two types of models have been used and evaluated for UiW project prediction: LSTM neural network based
model and XGBoost model. The LSTM model is similar to the one in Figure 24. The stacked LSTM model with
dense pre-layer and dropout layers provides in 512 node, 6 layer configuration, the result as is presented in
Figure 26. The input vector consists of 183 variables based on statistical variations of inputs of previous
consumptions, time based and weather parameters: temperature, radiation and precipitation. The prediction
is provided for a week in advance, the variables are build in a way to allow the prediction of a whole week. A
whole week is mostly not achievable since the metering data is D-1 and event data is not complete. The real
forecasting span is then 5 days long. The weather forecast provided is for 7 days.

In Figure 27, a basic evaluation of five statistical parameters of the forecast is provided per day in percentage
values: peak height error (blue), peak time error (orange), min value error (green), peak-to-peak error (red),
standard deviation error of day data (violet) and mean error (brown). From Figure 26 and Figure 27 it can be
seen that the peak time is quite well predicted. The peak height prediction error varies around and below 10%,
with one bold missed prediction on 24" of May. Peek-to-peek and standard deviation errors are in the range
of 20% and the mean value error is close to the peak error.
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Figure 27: Stacked LSTM model consumption prediction errors
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Figure 28: XGBoost optimised consumption prediction model
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Figure 29: XGBoost optimised consumption prediction model errors

In Figure 28 a XGBoost prediction of the same load is provided. The observation of the figure indicates that
the model behaves better then the stacked LSTM model. Similar truth conveys the error report in Figure 30
which shows peak time error close to 0%, mean, peak and peek-to-peek error in the range of 10% and standard
deviation error in the range of 20%. The minimum value has a significant error, at least in three prediction

days.

The generation prediction is provided only for XGBoost model in Figure 30. The generation prediction of overall
generation at all prosumers in the pilot group is not perfect. We will need to check it against single user
prediction and try to predict the aggregated from there.

1000

800 ﬂ

600 ’

— all-
check prediction

400 / i l'\

W

24 25 26 27 28 29 30
May
2021

Figure 30: XGBoost generation prediction

The baseline shows that the predictions at a level of a few hundreds of consumers are possible, though not
completely accurate. The predictions based on the data collected in 2020 and 2021 are even harder, since the
patterns of household consumption usage are very diverse, due to COVID-19 pandemic. In the next period the
predictions will need to be scaled down to a level of a single prosumer.
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5.3.24  Thermal modelling

The thermal modelling involves studying of the household thermal response to outside temperature and of the
household thermal lag. In the first phase only the thermal response has been studied. In Figure 31 the thermal
response of the piloting group of households in the CPT project is presented. The data in the figure is based
on smart metering of more than 750 pilot users. In the figure, daily averages for year 2018 are presented with
respect to the daily temperature average. The average daily consumption is in the range of 30kW to more than
70kW. The average daily temperature is in the range of -13 to +25°C. What can be seen in the figure is that
both the thermal dependency for lower and higher temperatures exist. At lower temperatures, the consumption
grows due to heating at some of the households. At higher temperatures the consumption also increases and
the graph gets a typical “hockey stick” look, due to the cooling in some of the households. In contrast to the
Finish example in Error! Reference source not found., the bottom figure shows the increase of the
consumption after the tipping point temperature of 18°C, which is a rough estimation given in (Borgeson, 2013).
The thermal response observed on daily averages corresponds with the thermal response evaluated during
flexibility events as presented in Figure 23.
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Figure 31: Thermal response of CPK project pilot group (2018)

The thermal response can be modelled with linear regression models as shown in the equation below. For
basic modelling we have used a simple linear regression model as is provided by sci-kit learn, a Python toolkit
for predictive data analysis?. The sci-kit Linear Regression module fits a linear model with coefficients B = (Bo,

.., Bn) to minimize the residual sum of squares between the observed targets in the dataset, and the targets
predicted by the linear approximation.

y = by+ bixy+ ..+ bx, +e (8)

In the first modelling approximation only two parameters have been modelled, namely Bo and pi. Sample
thermal responses are shown in Figure 32. The figures on the left hand side, from top to bottom:

e the upper figure presents clean, low temperature thermal response. The household uses electrical
energy for heating only. The average daily consumption is up to 4kW maximum.

e the second figure presents a more scattered consumption with clear heating characteristics at low
temperatures and cooling characteristics at high temperatures. In comparison to top figure example,
more scattered consumptions could indicate an older house with more diverse thermal response.

e the third figure again indicates quite a scattered response. Two average consumption patterns are
present at lower temperatures. The upper, indicating usage of electricity for heating and the lower one,

2 See sci-kit learn home page for details: https://scikit-learn.org/stable/index.html

Document version: 1.0 Page 40 of 61 Submission date: 2021-06-14



IFLEX

D3.2 Revised hybrid-modelling module

when some other kind of heating seems to be used. The higher temperature consumption response

is weak.

the last figure presents a response with no thermal dependency, where the consumption is the same

regardless of the temperature.
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Figure 32: Individual households temperature dependencies
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On the right-hand size of Figure 32, the top 30 Bi-parameter households are presented. The B1 parameter
denotes the slope of the linear regression line through the data. The top household uses exhibit an increase
of 250W for every one degree Celcius less, according to the linear regression model. The o parameter denotes
an interception point with y axis, roughly indicating the top daily average consumption.
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Figure 33: Clustering of the CPT piloting group per thermal response below vs. above tipping point (18°C) in year 2018

Number Share [%] Consumption/year [kKW] Consumption [%]

kmean_label
0 171 22.83 35184.98 21.50
1 25 3.34 14403.28 8.80
2 82 10.95 29407.64 17.97
3 41 54.87 66649.84 40.72
4 60 8.01 18028.97 11.02

Figure 34: Piloting users consumption cluster information

To further model the household consumptions, they have been split at the tipping point of 18°C. In this way,
average daily consumptions at temperatures higher and lower than 18°C were grouped. Each group has been
modelled with the linear regression strategy, employing a two-parameter model, as has been explained
previously. The modelling has led to two group of parameters. For higher temperatures, the Bin parameter is
expected to be slightly negative when no cooling is present and higher, when the household uses cooling
systems. For lower temperatures, the Bu parameter is expected to be negative, since consumption should rise
when the temperature is dropping. A few combinations of both 1 parameter can be expected:

- Pu=0, B> 0: the household uses electricity for cooling,

- PBu=0, B1n=~ 0: the household is not thermal dependent,

- Pu<0, B~ 0: the household uses electricity for heating,

- Bu<0, B1r> 0: the household uses electricity both for heating and cooling.

Based on these assumptions, Figure 33 presents the clustering of the households according to pu (Slope <
18°C) and f1n (Slope > 18°C). Clustering has been done with sci-kit learn K-means clustering algorithm. Five
clusters were used. The orange cluster outpoints households with large heating dependency. The cooling
dependency is either present or not. The green cluster indicates medium heating dependency and similar
cooling dependency to the orange cluster. It could be that the cluster uses both electricity and other energy
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sources for heating. The red and blue cluster exhibit similar low thermal dependency. The red one seems to
be more constant in energy consumption and the blue one shows similar low heating dependency but even
lower consumption at the temperatures above the tipping point. The violet cluster indicates low heating and
high cooling dependencies. The households in this cluster seem to use alternative energy sources for heating
exclusively and energy for cooling only. As such, they are a nice group with a potential for future energy
installations (heat pumps, photovoltaics, etc.). Finally, the k-means clustering is not as efficient as envisioned.
The clusters are not close to intended split in four clusters as were presented before. More experimentation is
neded with additional parameters or different method of clustering.

In Figure 34, basic information about the clusters is provided. In the first column, the strength of the cluster is
given. The red (3) and blue (0) clusters are the strongest in number. They present more than two thirds of the
population. Their thermal response does not promise much potential in future DR programmes. The orange
(1), green (2) and violet (4) clusters, show more potential, either for direct participation in flexibility services or
as a potential to receive energy advice how to alter existing energy settings. Combined, these clusters
consume almost 38% of the overall consumption.

5.3.2.5 Federated learning: practical example in PySyft®

In this simple example we have two data owners and a data scientist. Both data owners generate sensitive
data. We pretend that the data was actually acquired through some measurements from data owners by adding
some nhoise.

The data scientist wants to find out what the function that generated the data was, without ever getting access
to actual data. Data scientist achieves this through federated learning.

Data used in this presentation is going to be quite simple - function generating data is linear:
y=f(& =[12,..,7]*X + 42 9)

or equivalently
Yy=f(x,, %) = 1xx; +2%x, 4+ 4+ 7 xx, +42 (10)

If data was centralized, the data scientist could build a simple neural network with only one linear layer.
Resulting model would look something like [wi, w2, . . ., w8] and during training it should converge to some
approximation of actual function coefficients [1, 2, 3, 4, 5, 6, 7, 42].

Without access to actual data, the data scientist describes the model and lets data owners train that model on
their private data. After both data owners are done building the model, they send it back to the data scientist.
Data scientist then combines both models by averaging individual weights. This combined model is a better
approximation for the function that generated both data owner’s data than any individual model.

Explicitly: let's say that the model trained on the first data owner’s data is described by [wi1,1, W12, . . ., Wig]
and the model trained on the second data owner’s data is described by [w2,1, W22, . . ., Wz,g]. The combined
model, calculated by the data scientist is then described by

(€8Y)

Wi+ Wy Wip + Wy, WigtW,g
> , > ) e >

We can see that this technique is easily adapted to situations with more than two data owners.

To further simplify the procedure, we shall avoid using differential privacy techniques.

5.3.25.1  PySyft

Pysyft is a python library offering implementations of certain privacy tools/techniques: federated learning,
differential privacy, secure multi-party computations and homomorphic encryption.

3 PySyft, A library for computing on data you do not own and cannot see. See PySyft home page for more information:
https://github.com/OpenMined/PySyft
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5.3.2.5.2 Code

To follow the example three notebooks need to be started: ‘DataOwner1.ipynb’, 'DataOwner2.ipynb’ and 'Data-
Scientist.ipynb'.

The following pages contain screenshots of the python notebooks. Under each screenshot are the names of
the notebooks in which you have to enter the code from that screenshot.

5.3.25.2.1 Import libraries

1 import syft as sy
2 import torch

3 import numpy as np
4 import random

Figure 35: Run at DataOwnerl, DataOwner2 and DataScientist
5.3.2.5.2.2 Launch Duet server 1 and send Duet Server ID to the Data Scientist and wait for him to connect

duet = sy.launch_duet()

Duet

# & I Starting Duet o0 & M

N7 > DISCLAIMER: Duet is an experimental feature currently in beta.
Jhh > Use at your own risk.

> @ Love Duet? Please consider supporting our community!
> https://github.com/sponsors/OpenMined

207 > Punching through firewall to OpenGrid Network Node at:
2N > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000

A >
DA > ...waiting for response from OpenGrid Network...
NA57 > DONE!

LHHEETTS) ST VT OV HO0 6 f8b5d791c69e2f78 b0 f64d93bclch

Jnn > STEP 1: Send the following code to your Duet Partner!

import syft as sy
duet = sy.duet("96f8b5d791c69e2f78fb0f64d93bclc6")

AN > STEP 2: Ask your partner for their Client ID and enter it below!

A7) > Duet Partner's Client ID:

Figure 36: At DataOwnerl: Launch Duet server 1 and send Duet Server ID to the Data Scientist and wait for him to
connect
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5.3.2.5.2.3 Launch Duet server 2 and send Duet Server ID to the Data Scientist and wait for him to connect

duet = sy.launch duet()

(0 Duet

rrr Starting Duet Q42 L]

Dhn > DISCLAIMER: Duet is an experimental feature currently in beta.
DAL > Use at your own risk.

v

@ Love Duet? Please consider supporting our community!
https://github.com/sponsors/0OpenMined

v

247 > Punching through firewall to OpenGrid Network Node at:

DN > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000
g >

nhy > ...waiting for response from OpenGrid Network...

NA5n > DONE!

I R TT1) GB-T-1o V-1 8 ( Hlbbd 1e5490378c0bc36faf49be7ede780

nn > STEP 1: Send the following code to your Duet Partner!

import syft as sy
duet = sy.duet("bbd1e5490378c0bc36faf49be7ede780")

Nhn > STEP 2: Ask your partner for their Client ID and enter it below!

nn > Duet Partnmer's Client ID:

Figure 37: At DataOwner2: Launch Duet server 2 and send Duet Server ID to the Data Scientist and wait for him to
connect

5.3.2.5.2.4 Connect to the first Data Owner’s duet server and send back Duet Client ID

1 duetl = sy.join duet("96f8b5d791c69e2f78fb@f64d93bclce")

# & IIr Joining Duet 247 &

D0y > DISCLAIMER: Duet is an experimental feature currently in beta.
03 > Use at your own risk.

v

@ Love Duet? Please consider supporting our community!
https://github.com/sponsors/0OpenMined

v

Nhh > Punching through firewall to OpenGrid Network Node at:

non > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000
nan >

nhn > ...waiting for response from OpenGrid Network...

Nh7 > DONE!

nAn > STEP 1: Send the following Duet Client ID to your duet partner!

non > Duet Client ID: PLLLIEEEEEYA{FLLIGGEEPEFILS T4

nhh > ...waiting for partner to connect...

Figure 38: At DataScientist: Connect to the first Data Owner’s duet server and send back Duet Client ID
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5.3.2.5.2.5 Connect to the second Data Owner’s duet server and send back Duet Client ID

1 duet2 = sy.join duet("bbd1e5490378cObc36faf49be7e4e780")

D Duet

% & PP Joining Duet jan o~ M

77 > DISCLAIMER: Duet is an experimental feature currently in beta.
177 > Use at your own risk.

> @ Love Duet? Please consider supporting our community!
> https://github.com/sponsors/0OpenMined
75 > Punching through firewall to OpenGrid Network Node at:
nan > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000
nan >
nan > ...waiting for response from OpenGrid Network...
N3N > DONE!

NN > STEP 1: Send the following Duet Client ID to your duet partner!
327 > Duet Client ID:
nhh > ...walting for partner to connect...
Figure 39: At DataScientist: Connect to the second Data Owner’s duet server and send back Duet Client ID
5.3.2.5.2.6  Accept Data Scientist as a client by entering their Duet Client ID

1 duet = sy.launch_duet()

) Duet

% & IrroStarting Duet nan & M

N7 > DISCLAIMER: Duet is an experimental feature currently in beta.
DA) > Use at your own risk.

v

@ Love Duet? Please consider supporting our community!
https://github.com/sponsors/OpenMined

'

203 > Punching through firewall to OpenGrid Network Node at:

AN > http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com: 5000
[an >

Iha > ...waiting for response from OpenGrid Network...

nhh > DONE!

2n7 > Duet Server ID: 96f8b5d791c69e2f78fb0of64d93bclco

JAh > STEP 1: Send the following code to your Duet Partner!

import syft as sy
duet = sy.duet("96f8b5d791c69e2f78fbof64d93bclch")

NNh > STEP 2: Ask your partner for their Client ID and enter it below!

AL > Duet Partner's Client ID:  2b6db93a337fc2e0d6fda9232dff7cc5

Figure 40: At DataOwnerl and DataOwner2: Accept Data Scientist as a client by entering their Duet Client ID
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5.3.25.2.7

Duet

¥ & rrr Starting Duet ) & M

230 > DISCLAIMER: Duet is an experimental feature currently in beta.

233 >

>
>

234 >
bl
233 >
233 >
233 >
235 >

235 >

Use at your own risk.
@ Love Duet? Please consider supporting our community!
https://github.com/sponsors/OpenMined

Punching through firewall to OpenGrid Network Node at:
http://ec2-18-218-7-180.us-east-2.compute.amazonaws.com:5000

...waiting for response from OpenGrid Network...
DONE!
Duet Server ID: 96f8b5d791c69e2f78fb0f64d93bclch

STEP 1: Send the following code to your Duet Partner!

import syft as sy

duet =

NhN > STEP 2: Ask your partner for their Client ID and enter it below!

235 >
235 >
233 >

nan >

sy.duet("96f8b5d791c69e2f78fb0f64d93bclc6")

Duet Partner's Client ID: 2b6db93a337fc2e0d6fda9232dff7cc5
Connecting...

CONNECTED!

Connection between Data Owner and Data Scientist successfully established

DUET LIVE STATUS - Objects: 0 Requests: @ Messages: 0 Request Handlers: ©

Figure 41: At DataOwnerl and DataOwner2: Connection between Data Owner and Data Scientist successfully

established
5.3.2.5.2.8 Define data generating functions
1 def dot(x, y):
2 r=20
3 for i in range(len(x)):
1 r += x[i]*y[i]
Q return r
7 (XL, X2, X3, <<:, Xn) = I*x] & 2%x2 + 3*X3 ' + ... * N*xXn + 42
def f(x):

) b=

(S, SOV,

3 b et el i e 7 gt

W = [i for i in range(1l, len(x)+1)]
return dot(x, W) + 42

def f noisy(x):

return f(x) + random.random()

def gen data(dim, n):

datapoint = []

data = []

for i in range(n):
datapoint = [50*random.random()-25 for _ in range(dim)]
data.append(datapoint)

return data

f% def gen target(data):

return [f noisy(x) for x in datal

Figure 42: At DataOwnerl and DataOwner2: Define data generating functions
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5.3.25.29

in _dim =

Generate data using those functions - 1000 samples, 7 features

7

out dim = 1

N = 1000

data = gen data(in_dim, N)

target =

gen target(data)

data = torch.FloatTensor(np.array(data))

target =

torch.FloatTensor(np.array(target).reshape(-1, 1))

print(data[0:5])

print(target[0:5])

tensor([[ 7.5745, 1.5919, -12.5249, -20.7874, 5.2903, -11.8149, 7.0543]
[-18.3937, 24.1931, -5.9781, -6.5116, 21.3468, 21.8862, 14.0414],
[ 14.9093, 15.5951, 24.8717, -6.0548, -17.8292, -2.5904, 20.2570],
[ 17.0236, 6.3571, 13.9933, -20.3199, 23.2245, 22.5704, 21.2761],
[ 3.4338, -1.2499, 4.2079, 11.3048, -24.1069, 17.5111, 5.2745]])

tensor([[-62.5342],
[365.1499],
[175.9734],
[433.5750],
[122.5972]])

Figure 43: At DataOwnerl and DataOwner2: Generate data using those functions - 1000 samples, 7 features

5.3.2.5.2.10 Upload pointers to ’data’ and 'target’ to Duet server

Pointers on Duet server are memory addresses to Data Owner’s data. They contain zero information about
data they are pointing to.

data = data.tag("DOl1 data")
data data.describe("Dataset of " + str(N) + "
data ptr = data.send(duet, pointable=True)

samples, " + str(in_dim) + " features")

target = target.tag("D0O1 target")
target = target.describe(str(N) + " ground truths, "
target ptr = target.send(duet, pointable=True)

+ str(out_dim) + " features")

Figure 44: At DataOwnerl and DataOwner2: Upload pointers to 'data’ and 'target’ to Duet server

5.3.2.5.2.11 Accept all requests

Duet client (Data Scientist) is able to get data that pointers are pointing to through requests. Requests can be
manually accepted or denied. While developing we accept all requests for practical reasons.

duet.requests.add handler(action="accept”, print local=True)

Figure 45: At DataOwnerl and DataOwner2: Accept all requests

5.3.2.5.2.12 Define machine learning model

Data in this example is so simple we only need one linear layer. PySyft inherits largely from PyTorch so it's
really similar to defining ML model in PyTorch. The main difference is that it works with pointers to objects
instead of directly with objects.

in dim = 7
out_dim = 1

class SyNet(sy.Module):
def init (self, torch ref):
super(SyNet, self). init (torch ref=torch ref)
self.linear = self.torch _ref.nn.Linear(in_dim, out dim)

def forward(self, x):

x = self.linear(x)
return x

Figure 46: At DataScientist: Define machine learning model

5.3.2.5.2.13 Define train function

The main loop runs on our machine but actual work (computing loss, gradients) is done on the Data Owner’s
machine. This loop basically tells Data Owners machine what to do through pointers. As Data Scientists we
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need feedback about losses, to see if training is actually converging. We do this through requesting the actual
value of pointers to loss value. Requests require some back-and-forth communication and are bottlenecking

whole process, that’s why we only request every 100th loss value.

def train(iterations, model ptr, torch ptr, optim ptr, data ptr, target ptr):
losses = []

for i in range(iterations):

optim ptr.zero grad()

output ptr = model ptr(data ptr)

loss ptr = torch ptr.nn.functional.mse loss(output ptr, target ptr)

loss _item ptr = loss ptr.item()

if i % 100 == 0:
loss value = loss item ptr.get(request block=True)
losses.append(loss_value)
print("Epoch", i, "loss", loss_value)

loss ptr.backward()

optim ptr.step()

return losses
Figure 47: At DataScientist: Define train function
5.3.25.2.14  Save pointers to ’data’ and ’target’ from both Data Owners from Duet.store
duetl.store.pandas

ID Tags Description object_type

0 <UID: 7cbfeb7326ec4eed4alb651533aaa9961> [DO1 data] Dataset of 100 samples, 7 features <class ‘torch.Tensor'>

1 <UID: 4701e631039040c991d4959dfa035d0a> [DO1 target] 100 ground truths, 1 features <class 'torch.Tensor'>

duet2.store.pandas

ID Tags Description object_type

0 <UID: ba19a150cae948358{60bed1c31a39d2> [DO2 data] Dataset of 100 samples, 7 features <class 'torch.Tensor'>
1 <UID: 330060bBe2ba4116850a7b0fc36e34c2> [DO2 target] 100 ground truths, 1 features <class ‘torch.Tensor'>

datal ptr

= duetl.store([0]
targetl ptr =

duetl.store[1]

data2 ptr = duet2.store[0]
target2 ptr = duet2.store[1]

print(datal_ptr)
print(targetl ptr)

<syft.proxy.torch.TensorPointer object at 0x7fdc49b3c3a0>
<syft.proxy.torch.TensorPointer object at 0x7fdc49b44970>

Figure 48: At DataScientist: Save pointers to 'data’ and 'target’ from both Data Owners from Duet.store

5.3.2.5.2.15 Get pointers to additional information needed in our train function

Firstly, we need pointers to base models. We do this by compiling our previously defined model locally and
sending it to the Data Owner. The value returned by that process is a pointer to the remote model. We also

need pointers to remote Torches and optimisers.
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5.3.25.2.16

local modell = SyNet(torch)

remote modell ptr
remote torchl ptr

local _modell.send(duetl)
duetl.torch

nun

remote optiml ptr = remote torchl ptr.optim.Adam(params=remote modell ptr.parameters(), lr=0.1)

local_model2 = SyNet(torch)
remote model2 ptr = local model2.send(duet2)
remote_torch2 ptr = duet2.torch

remote optim2 ptr = remote torch2 ptr.optim.Adam(params = remote model2 ptr.parameters(), lr = 0.1)

Figure 49: At DataScientist: Get pointers to additional information needed in our train function
Run training loop on first Data Owner’s data

iteration = 1500

losses = train(iteration, remote modell ptr, remote torchl ptr, remote optiml ptr, datal ptr, targetl ptr)

Epoch @ loss 32351.53515625

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

100
200
300
400
500
600
700

1088.52294921875
602.0419311523438
354.1318054199219
192.7604522705078
96.97334289550781
44.94887161254883
19.143888473510742
800 loss 7.488239765167236
900 loss 2.707026481628418
1000 loss 0.9301570057868958
1100 loss 0.33328601717948914
1200 loss 0.1525404155254364
1300 loss 0.10334277153015137
1400 loss 0.09135233610868454

loss
loss
loss
loss
loss
loss
loss

Figure 50: At DataScientist: Run training loop on first Data Owner’s data

5.3.2.5.2.17 Run training loop on second Data Owner’s data

iteration = 1000
losses =

Epoch 0 loss 28302.818359375

Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch
Epoch

100
200
300
400
500
600
700
800
900

948.8074340820312
459.63250732421875
216.29408264160156
91.88968658447266
34.7899055480957
11.662283897399902
3.474759578704834
0.9547136425971985
0.28255370259284973

loss
loss
loss
loss
loss
loss
loss
loss
loss

Figure 51: at DataScientist: Run training loop on second Data Owner’s data

5.3.2.5.2.18 Send requests to get content of pointers to models trained on individual Data Owner’s data

—
NN

paramsl = remote modell ptr.parameters().get(request block=True)
params2 = remote model2 ptr.parameters().get(request block=True)
paramsl = np.append(params1[0].detach().numpy(), paramsl[1].detach().numpy())
params2 = np.append(params2[0].detach().numpy(), params2[1].detach().numpy())

print(paramsl)
print(params2)

.99712676 2.0022209 2.9997318 4.002106 5.0015187 5.9974766
.0004635 42.5041 ]
.0008566 1.9986084 3.0013392 4.0008726 5.001893 5.9982076

.0012107 42.513268 ]

train(iteration, remote model2 ptr, remote torch2 ptr, remote optim2 ptr, data2 ptr, target2 ptr)

Figure 52: At DataScientist: Send requests to get content of pointers to models trained on individual Data Owner’s data

5.3.2.5.2.19 Measure the error of individual trained model

As described in the previous section, both models should look close to [1, 2, ..., 7, 42]. We define model error
as its distance from [1,2,..,7,42].
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exact_parameters = np.array([1,2,3,4,5,6,7,42])

errl = np.linalg.norm(paramsl - exact parameters)
err2 = np.linalg.norm(params2 - exact parameters)
print('Errorl: ', errl)
print('Error2: ', err2)

Errorl: 0.12579936909934394
Error2: 0.05482733131874097

Figure 53: At DataScientist: Measure the error of individual trained model

5.3.2.5.2.20 Combine both models through averaging individual weights and calculate error of combined
model

combined params = (paramsl + params2) / 2
err3 = np.linalg.norm(combined params - exact parameters)
print(err3)

0.03669843264261282

Figure 54: At DataScientist: Combine both models through averaging individual weights and calculate error of combined
model

5.3.2.5.2.21 Combined model should be better than individual models

Combined model error is smaller than individual model error

err3 < errl and err3 < err2

True

Figure 55: At DataScientist: Combined model should be better than individual models
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6 Conclusion

This deliverable has documented the intermediate work on the digital twin repository module of the iIFLEX
Framework. The digital twin module consists of several models supporting forecast and response modelling of
the apartment buildings and prosumer households. In this phase, intermediate models were presented, as well
the project baselines as a starting point of the project work. Experiences and data gained from the first phase
of the project pilot have been used to improve the models from the initial versions. Also, in this phase of the
project, multiple methods to model the buildings have been tried. The data and system information will help to
improve the models and foster their application and usage in overall iFLEX framework solutions.
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9 Appendix: Digital twin Jira requirements

[IF-68] Apartment building flexibility model

Status:

Project:
Component/s:
Affects Version/s:
Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Rationale:

Source:

Pilot Finland:
Pilot Greece:
Pilot Slovenia:

Open
iFlex Project
None
None
None

Functional Priority: Major
Dusan Gabrijelcic Assignhee: Unassigned
Unresolved Votes: 0
DigitalTwinRepository

The flexibility model forecast part of the building energy consumption that is flexible
and available to be used in flexibility services.

HLUC-3, PUC-6, PUC-8, PUC-9, PUC-10
Phase one

Not applicable

Not applicable

Define an apartment building flexibility model and forecast available flexibility in a specified time frame.

[IF-67] Apartment building electricity model

Status:

Project:
Component/s:
Affects Version/s:
Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Rationale:

Source:

Pilot Finland:
Pilot Greece:
Pilot Slovenia:

Open
iFlex Project
None
None
None

Functional Priority: Major
Dusan Gabrijelcic Assignee: Unassigned
Unresolved Votes: 0
DigitalTwinRepository

Electricity consumption in the building together with the district heating model provides
information on total energy consumption in the building.

HLUC- 3, PUC-8, PUC-10
Phase one

Not applicable

Not applicable

The apartment building electricity model provides forecast for electricity consumption in a building.
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[IF-66] Apartment building district heating model

Status: Open

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Dusan Gabrijelcic Assignhee: Unassigned

Resolution: Unresolved Votes: 0

Labels: DigitalTwinRepository

Rationale: District heating supplies part of energy to the apartment building and is important to

understand general thermal conditions in the building. The model is used in
combination with electricity consumption model to forecast a total energy and
electricity consumption in the building.

Source: HLUC-3, PUC-8, PUC-10
Pilot Finland: Phase one

Pilot Greece: Not applicable

Pilot Slovenia: Not applicable

Create district heating model and provide a district heating forecast for a specified period.

[IF-65] Household occupant behaviour model

Status: Open

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Dusan Gabrijelcic Assignee: Unassigned

Resolution: Unresolved Votes: 0

Labels: DigitalTwinRepository

Rationale: Many of the loads in the household are under direct consumer control. To be able to
predict a general household consumption more accurate an occupant behavior model
is needed.

Source: PUC-4, PUC-5, PUC-6, PUC-8, PUC-10

Pilot Finland: Not applicable

Pilot Greece: Not applicable

Pilot Slovenia: Phase two

Define an occupant behavior model for better prediction of the household consumption.
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[IF-64] Household flexibility model

Status:

Project:
Component/s:
Affects Version/s:
Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Rationale:

Source:

Pilot Finland:
Pilot Greece:
Pilot Slovenia:

Open
iFlex Project
None
None
None

Functional Priority: Major
Dusan Gabrijelcic Assignhee: Unassigned

Unresolved Votes: 0
DigitalTwinRepository

Flexibility forecast is needed for planning of various flexibility services, from self-
balancing to implicit, price based, and explicit flexibility services. The flexibility can be
reported to flexibility services management for better planning and optimization.

PUC-8, PUC-4, PUC-5, PUC-6, PUC-10
Not applicable

Phase two

Phase one

Create a household flexibility model. The model is able to provide a forecast of an available household
flexibility in a specified time-frame.

[IF-63] Household electricity model

Status:

Project:
Component/s:
Affects Version/s:
Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Rationale:

Source:

Pilot Finland:
Pilot Greece:
Pilot Slovenia:

Open
iFlex Project
None
None
None

Functional Priority: Major
Dusan Gabrijelcic Assignee: Unassigned

Unresolved Votes: 0
DigitalTwinRepository

A basic service for iIFLEX Assistant. The service forecast the consumption and
generation so the other iFLEX Assistant components could plan for and automate the
household consumption as well evaluate future participation in flexibility services.

HLUC-1, PUC-4, PUC-6, PUC-8, PUC-10
Not applicable

Phase two

Phase one

Create a household electricity model being able to forecast the household consumption and generation.
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IFLEX

D3.2 Revised hybrid-modelling module

[IF-62] Household thermal model

Status:
Project:
Component/s:

Affects Version/s:

Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Rationale:

Source:

Pilot Finland:
Pilot Greece:
Pilot Slovenia:

Open
iFlex Project
None
None
None

Functional Priority: Major
Assignhee: Unassigned

Votes: 0

Dusan Gabirijelcic

Unresolved
DigitalTwinRepository

A thermal model is essential to understand the household consumption and evaluate
its future flexibility potential.

PUC-5

Not applicable
Not applicable
Phase one

Create a household thermal model and potential thermal lag.

[IF-105] Data collection from demand response tests

Status:
Project:
Component/s:

Affects Version/s:

Fix Version/s:

Type:
Reporter:
Resolution:
Labels:

Issue Links:

Rationale:

Pilot Finland:
Pilot Slovenia:
Pilot Greece:

Document version: 1.0

Open

iFlex Project

None

None

None

Non-functional Priority: Major

Jussi Kiljander Assignee: Jussi Kiljander

Unresolved Votes: 0

None

Depend

depends |F-106 Machine learning based apartment buil... Open
depends #=-66 FN-DTR-04 Apartment building district... Validated
depends H=—-67 FN-DTR-05 Apartment buiding electrici... Validated

In order to train and evaluate forecasting models and how they work during and after
demand response events, measurement data from pilot is required. Measurement
data includes district heating and electricity power measurements.

Phase one
Not applicable
Not applicable
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IFLEX D3.2 Revised hybrid-modelling module

Activate demand response events in different times of the day and different days of the week to improve
dataset used for forecasting model training

[IF-106] Machine learning based apartment building district heating and electricity
flexibility models

Status: Open

Project: iFlex Project

Component/s: None

Affects Version/s: None

Fix Version/s: None

Type: Functional Priority: Major

Reporter: Jussi Kiljander Assignhee: Unassigned

Resolution: Unresolved Votes: 0

Labels: DigitalTwinRepository

Issue Links: Depend
is depended by  IF-105 Data collection from demand response ... Open

Rationale: Machine learning can potentially outperform physics based models when
representative data is available

Pilot Finland: Phase two

Pilot Greece: Not applicable

Pilot Slovenia: Not applicable

Create model that forecasts available flexibility on district heating and electricity using machine learning and
indoor temperature using physics based model. Dataset for available flexibilty should contain flexibility
tests.
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