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1 Executive summary 

This deliverable presents the final iteration of the Automated Flexibility Management (AFM) module. The AFM 
module is a key component of the iFLEX Assistant. It is responsible for providing the Aggregator and Market 
Interface module and optimizing energy management within the consumer premises. The goal for this 
deliverable is to document the third specification and implementation of the AFM module, its interfaces with 
other modules, and insights into different optimal control approaches. 

The approach and methodology for implementing the AFM module is based on applying Artificial Intelligence 
(AI) technologies together with optimal control methods. Instead of typical AI-based decision-making 
approaches that learn control policies directly the idea is to apply model-based planning and control where 
machine learning is applied together with physics-based modelling to learn accurate and robust models of the 
consumer (includes people and their premises). These models form a digital twin of the consumer that can be 
used to plan and optimize flexibility management.  

The AFM control architecture is divided into two levels: Energy Planner and Controller(s). The Energy Planner 
is similar to the Customer Energy Manager (CEM) introduced in the EN 50491-12-x standard series. It is 
responsible for aggregating and optimizing the energy management at the consumer/building level without a 
need for flexible asset specific details. To realize this the Energy Planner interacts with Controllers that 
correspond to Resource Managers (RM) in the EN 50491-12-2 standard. Each Controller is responsible for a 
logical group of devices providing a logical functionality (e.g., heating system). In contrast to the Energy 
Planner that optimizes energy management at the whole building level, each Controller just follows the load 
profiled assigned to it by the Energy Planner. Section 4 describes the approach in more detail with the Monte 
Carlo Three Search Algorithm that is used for searching optimal control policies with the models. 

The AFM prototype for the third phase is implemented with Python programming language. The 
implementation consists of four main classes: AFM, EnergyPlanner, Resource and MqttInterface. The AFM 
class is the one that needs to be initialized to run the AFM module. It aggregates all the other classes and 
provided the main run loop for the AFM module. The EnergyPlanner implements the Energy Planner 
component of the AFM architecture. The Resource class implements Controller component. It also provides a 
uniform interface to the Digital Twin Repository module enabling the EnergyPlanner to access baseline and 
flexibility of the consumer. It should be noted that the Resource class implementation depends on the 
consumer and assets available in the consumer premises. Therefore, the main module provides only an 
abstract class that needs to be implemented and customized for different types of consumers. The 
MqttInterface class implements the MQTT interface of the AFM module. MQTT based interface was selected 
to allow lightweight communication protocol based on publish and subscribe communication pattern. The AFM 
module is customed for three different pilot sites in Finland, Greek and Slovenia. These instances and their 
differences are also briefly documented in this deliverable. 
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2 Introduction 

2.1 Purpose, context and scope 

The purpose of this deliverable is to document the third phase version of the Automated Flexibility Management 
(AFM) module developed in the Task 3.4 - Automated decision-making and energy optimization. The role of 
the AFM module is to provide automated and optimal flexibility management to maximize consumer benefits. 
This end, it utilizes digital twins of the consumer to plan and optimize control policies in the digital world and 
then select the best actions to be executed in the real world. This is achieved by using model predictive control 
with the digital twins created using the hybrid modelling approach combining machine learning with physics-
based modelling (see D3.2 for more details). Furthermore, the control strategy involves multiple layers of 
control, including rule-based control to ensure safe and robust control. 

The initial version of the AFM module, documented in D3.7, focused on explicit demand response functionality. 
The first version included the initial implementations of flexibility evaluation, control and interface specifications 
with other software modules. Evaluating flexibility and control was done via heuristic approach whereas the 
energy consumption optimization and implicit demand response were not considered at the phase one. 
Moreover, the first version was only customized and later deployed into the Finnish pilot focusing on apartment 
building flexibility management. 

In the phase two implementation, documented in D3.8, we extended the initial prototype of the AFM module 
with new features including implicit demand response and local control. The architecture is also updated to 
better match with the new Customer Energy Manager Standard (i.e., EN 50491-12-x standard series). 
Additionally, the first AFM-implementations tailored for the assets in Greek and Slovenian pilot were 
implemented.  

In the third and final version of the AFM, documented in this deliverable, we have tailored the implementation 
for new sites, and implemented a few small changes to the AFM interface based on the feedback obtained in 
phase 2. The main changes, compared to D3.8, are presented in section 2.2. 

2.2 Main changes compared to D3.8 

The main changes in D3.9 compared to the previous version of the deliverable are listed below: 

• Section 3: The use case and requirement status has been updated. A third phase focus section has been 
added. 

• Section 5.1: The flexibility management interface of the AFM module has been updated. 

• Section 5: The AFM instantiations section has been updated with new instantiation for a supermarket in 
the Finnish pilot (section 5.2.1.2). Additionally, the implementation for the Greek and Slovenian pilots 
(sections 5.2.2 and 5.2.3) have been updated based on the experiences and limitations encountered 
during the pre-piloting phase. 

2.3 Content and structure 

This deliverable is structured as follows: 

• Section 3 provides an overview, mapping the contents of the deliverable to the use cases and to the 
iFLEX architecture. 

• Section 4 introduces the main methods and approaches applied in the work and presents the logical 
control architecture for the AFM module. 

• Section 5 details the implementation of the Automated Flexibility Management module, outlining the 
software implementation, interfaces and real-world instantiations of the AFM module in the pilots. 

• Section 6 concludes the deliverable. 
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3 Overview 

3.1 Relation to use cases 

The use cases of the iFLEX project are documented in D2.1 - Use cases and requirements. Based on the use 
cases and system level requirements, component specific requirements have been defined for different 
functional components of the iFLEX Framework. Four high level requirements have been specified for the 
Automated Flexibility Management (AFM) component documented in this deliverable. The requirements are 
related to all three of the high-level requirements. The following list introduces the AFM specific requirements 
and maps them to the Primary Use Cases (PUC):  

• FN-AFM-01 - Provide baseline forecasts, related to PUC-8 

• FN-AFM-02 - Flexibility potential, related to PUC-8 

• FN-AFM-03 - Activate offered flexibility, related to PUC-9 

• FN-AFM-04 - Optimize flexibility based on prices (implicit demand response), related to PUC-9  

• FN-AFM-05 - Optimize flexibility locally (maximize self-consumption), related to PUC-10. 

• FN-AFM-06 - Provide schedule information for the End-user Interface 

The requirements in iFLEX are managed via Jira tool that provides methods for creating, prioritising, 
scheduling and monitoring requirements. 

 

Figure 1 illustrates how the requirements are managed in Jira. The full list of requirements is presented in the 
Appendix. All the requirements have been implemented and most of them also validated in phase 2. In phase 
3 pilots the remaining requirements will be validated with pilots in operational environment. 
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Figure 1: AFM requirements updated in the project’s Jira tool. 

3.2 Relation to the functional architecture of the iFLEX Framework 

Automated Flexibility Management module is at the centre of the iFLEX assistant framework, as is depicted in 
Figure 2. The main responsibilities of the module are: 

• Forecasting on status and energy consumption of the building. 

• Evaluation potential flexibilities on both electricity and district heat vectors. 

• Optimization building demand-response with respect to energy price, CO2 emissions etc. 

• Production of control signals to BEMS/HEMS according to the activated flexibility or optimized load 
plan. 

Forecasting is done by utilizing Digital Twin repository, which contains, as the name implies, all models related 
to the system. These models provide forecasts on energy loads, flexibility and response of flexible assets with 
respect to various control inputs. The models are documented in detail in D3.3 - Final Hybrid Modelling Module. 
Communication with BEMS/HEMS is done via Resource Abstraction Interface (RAI), which is documented in 
D4.3 – Final Resource Abstraction Interface. This interface also provides access to external data sources, 
such as weather and CO2 emissions data. Additionally, the AFM module communicates with the end-user 
(through end-user interface, see D3.6 - Final Natural User Interfaces) for receiving user-defined comfort and/or 
consumption preferences as well as request approval on changes to baseline consumption. Finally, activation 
of flexibilities is received from Aggregator and market interface, documented in D4.6 - Final Market and 
Aggregation Interface Module. 
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Figure 2. Functional view of the iFLEX assistant with Automated Flexibility Management module highlighted. 

 

3.3 Third phase focus 

The third phase focused on replicating the AFM implementations into new sites in the Greek, Slovenian, and 
Finnish pilots. To this end, the work focused on implementation and configuration of controllers (also called 
Resource Managers) for assets in those pilots. In the Greek pilot, we revised the controller implementation for 
boilers based on the feedback obtained from phase 2. Furthermore, we integrated additional sub-metering 
devices (smart plugs) in order to offer more detailed monitoring capabilities. For the Slovenian pilot the work 
focused on controller customization for household heating systems supplied by air-to-water heat pumps. In the 
Finnish pilot the work focused on controller implementation for a supermarket’s integrated heating system. In 
addition to the instantiations, the MQTT interface of the AFM was updated for phase 3 based on the lessons 
learned in phase 2. 
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4 Methodology and approach 

4.1 Functional architecture 

The functional architecture of the Automated Flexibility Manager is depicted in Figure 3. The figure presents 
the internal architecture of the AFM module and the other iFA functional components interacting with the AFM 
module. The AFM consist of two types of components: Energy Planner and Controller.  

 

Figure 3: Functional view of the Automated Flexibility Management module. 

There is a single Energy Planner component for each AFM/iFA. It is responsible for: 

1) Aggregating and optimizing flexible assets within the consumer premises. 

2) Delivering baseline and flexibility forecast to Aggregation and Market interface. 

3) Reacting to price, incentive, and explicit control signals to maximize consumer benefits while meeting 
their preferences. 

4) Informing each Controller about the flexible asset specific load profiles the asset should follow.  

The Energy Planner utilizes MPC-based (Kiljander et al., 2021) approach for optimizing the energy and 
flexibility management within consumer premises. The Digital Twin Repository (final version documented in 
D3.3) provided the models utilized for searching optimal load profile for each flexible asset. The optimality of 
the load plan is measured by a reward (or cost function), which depends on the market setting and end-user 
preferences. Additionally, the Energy Planner can utilize models for inflexible loads and local generation from 
RES generation to optimize the load profiles. A formal representation of the Energy Planner’s objective is 
presented in ( 3 ). The functions 𝑓𝑓,  𝑓𝑔 and 𝑓𝑑 are represented with the hybrid models provided by the Digital 

Twin Repository. 

There is a single Controller for each flexible asset (or logical group of flexible assets) within the consumer 
premises. Each controller is responsible for following the individual load plan provided by the Energy Planner. 
The optimization problem presented here can be labelled as a load following problem, which in standard 
optimization problem form can be presented as 
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min
𝑎1,…,𝑎𝑇

∑(𝐸𝑡 −  𝐸�̂�)
2

𝑁

𝑡=!

(1) 

𝑠. 𝑡.   𝑠𝑡 = 𝑓𝑓(𝑠𝑡−1, 𝑎𝑡−1) 

𝑠𝑚𝑖𝑛 ≤ 𝑠𝑇 ≤ 𝑠𝑚𝑎𝑥  
𝐸�̂�  ∈ 𝑠𝑡 , 

where 𝐸𝑡 is the energy in the load plan, 𝐸�̂� is the energy consumption predicted by the model 𝑓𝑓, and 𝑠𝑡 is the 

state of the system including the energy consumption and user comfort. This can be solved in many ways, for 
example if 𝑓𝑓 is a continuous function, convex optimization algorithms such as quadratic programming can be 

used (Bianchini et al., 2016; West et al., 2014). However, if the control horizon is short and control space 
limited, a brute force (guess and check) method will suffice.  

Depending on control frequency and resource dynamics the Controller can be implemented either with 
traditional reactive control mechanisms such as Proportional-Integrative-Derivative (PID) control or with more 
complex predictive control approach utilizing the models provided by the Digital Twin Repository. Important 
part of each Controller is also a rule-based control system that ensures safe and reliable operation of the 
system in case AI-based control is unsure of its decision or is otherwise compromised. 

In addition to these two components the energy management system (EMS), interfaced via the Resource 
Abstraction Interface of the consumer premises, is an important part of the control architecture. The EMS is 
responsible for ensuring the normal operation, i.e. operating range, of the system and also translates more 
high-level control (e.g. temperature set point) signals into actuator control signals. An example of this could be 
the controller inside a heat pump that turns the pump on and off while maintaining a desired temperature. In 
addition, it will maintain its parameters in operational range even by overriding incoming control signals if 
necessary. Typically, a Proportional-Integral-Derivative (PID) controller is used, which uses feedback 
mechanism to minimize error between desired set point and measured process variable. 

Two fundamental approaches can be recognized for Artificial Intelligence based optimal control, namely model-
free and model-based optimal control. In model-free control, as the name implies, there is no dynamics model 
to simulate states from. A popular technique is to use reinforcement learning in which the agent learns to 
control the system through interaction with the environment, bearing similarities with human learning. With the 
rise of neural networks, the agent used today is typically a neural network, in which case the technique is 
labelled as deep reinforcement learning (DRL). Among different DRL algorithms, the most popular for DR 
control is Q-learning (Sutton & Barto, 1998), which has been battle-tested in many scenarios (Chen et al., 
2018; Patyn et al., 2018; Ruelens et al., 2017; Ruelens et al., 2015). In Q-learning, the agent learns a function, 
labelled as Q-function, that estimates the value of an action in a given state (Figure 4). It does this by exploring 
the system by doing different actions and observing different reward-action pairs and then updating the value 
function using the following equation iteratively: 

𝑄𝑛𝑒𝑤(𝑠𝑡 , 𝑎𝑡) ← 𝑄𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡) + 𝛼 (𝑟𝑡 + 𝛾 max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄𝑜𝑙𝑑(𝑠𝑡 , 𝑎𝑡)) , (2) 

where 𝑠𝑡 is the state, 𝑎𝑡 is the action, 𝛼 is the learning rate and 𝛾 is the future rewards discount factor. In 
essence, the new value of Q-function is obtained by adding the total net reward scaled by the learning rate to 
the previous value. 

 

Figure 4. Q-learning algorithm. 

In contrast to model-free algorithms, model-based control techniques rely on dynamics model, which is used 
to simulate different control scenarios. This optimal control problem for DR can be presented in general level 
as (Kiljander et al., 2021): 
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max

𝑎1 ,…,𝑎𝑇
∑

 
𝑟(𝑠𝑡 , 𝑎𝑡)

𝑇

𝑡=1

 

𝑠. 𝑡.  𝑠𝑡 =  𝑓𝑓(𝑠𝑡−1, 𝑎𝑡−1) +  𝑓𝑔(𝑠𝑡−1,) + 𝑓𝑑(𝑠𝑡−1,) 

     𝑠𝑚𝑖𝑛  ≤  𝑠𝑡 ≤  𝑠𝑚𝑎𝑥  , 

( 3 ) 

where r is the reward function, 𝑠𝑡 is the state of the system, and 𝑎𝑡 is the action. The 𝑠𝑚𝑎𝑥  and 𝑠𝑚𝑖𝑛represent 

possible constrains such as the minimum and maximum values for indoor temperature. The 𝑓𝑓,  𝑓𝑔 and 𝑓𝑑 

represent models for flexible resources, power generation and inflexible demands, respectively. The dynamics 
models 𝑓𝑓 , 𝑓𝑔 , 𝑓𝑑 can be any functions, from simple heuristics to deep neural networks. However, the choice of 

the models also dictates the possible algorithms that can be used to solve the problem. Generally, the 
optimization algorithms can be divided into gradient-based and gradient-free methods. Gradient-based 
methods are usually faster and also can (mathematically) guarantee an optimal solution but are notoriously 
difficult to use with neural network models. This is mainly due to the exploding and vanishing gradient problem 
(Pascanu et al., 2013). Gradient-free methods, such as genetic algorithms and particle swarm optimization 
(Kusiak et al., 2014; Ma & Wang, 2011; Tang & Xu, 2011), do work well with neural networks and are used 
extensively with them but lag on accuracy and efficiency compared to gradient-based methods. In addition, 
model-based optimal control with neural networks typically employs a Nonlinear Model Predictive Control 
(NMPC) approach, a form of closed-loop control, where the control algorithm uses feedback from the system 
when making new decisions, as is shown in Figure 5 (Kiljander et al., 2021). In practice, this means that a new 
optimized plan is done at every time step with the latest information available, compared to doing it only once 
per period. An upside of this approach is that it leads to more optimal control with a trade-off in plan 
predictability. 

 

Figure 5. Model predictive control (MPC) method for model-based optimal control. 

4.2 Monte-Carlo Three Search for optimal control with hybrid models 

The model predictive control withing the AFM is realized with the Monte Carlo Tree Search (MCTS) algorithm 
(Browne et al., 2012). MCTS is a simulation-based tree search algorithm that has become popular in Artificial 
Intelligence (AI) solutions for game playing such as the AlphaGo (Silver, 2016), and AlphaZero (Silver et al., 
2018) developed by the DeepMind. These solutions combine MCTS with deep reinforcement learning (DRL) 
to achieve state-of-the-art performance in Shogi, Go, and Chess. 

To the best of our knowledge, the optimal control solution developed for AFM module is the first that applies 
MCTS for demand-side flexibility management and building energy optimization. MCTS provides a lightweight 
optimization framework that is a natural selection over derivative-based methods when the control inputs are 
not continuous (e.g., the heat pump setpoints in this case). Furthermore, the main reason for using MCTS is 
that it is suitable for the hybrid-models (documented in D3.1, D3.2 and D3.3) that do not provide gradients to 
be used for optimization.  

In MCTS the search space of possible trajectories (alternative control actions at different time periods) is 
represented as a tree. The goal is to find the most optimal set of actions that maximizes the reward. Each 
execution is an iterative process that simulates many trajectories starting from the current state and running 
to a terminal state (i.e., end of the optimization window). MCTS uses Monte Carlo simulation to estimate the 
value of different states to guide the search toward optimal trajectories in the search space. In addition to 
exploiting the trajectory that is currently perceived as the optimal one, MCTS continues to evaluate other 
alternatives periodically. This balancing between the optimal strategy and search for alternative trajectories is 
known as the ”exploration-exploitation trade-off“. There are many variants of MCTS proposed in the literature. 
The current implementation of the algorithm for the AFM module comprises of following four steps: selection, 
expansion, simulation, and backpropagation. (Sutton & Barto, 2018) 
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In the selection step the algorithm selects an optimal path in the search tree using a tree policy. The path 
represents the optimal actions (e.g. HVAC set points) at different time periods. The search starts from the root 
node (i.e., current state of the system) and continues until a leaf node is reached. A leaf is any node that has 
a child node from which no simulation has been executed. An important part of the tree policy is to balance 
the exploration and exploitation (i.e., how much to emphasize the most promising parts of the search space 
versus exploring the tree for new regions which could provide even more value). The tree policy implemented 
for the AFM modules uses the Upper Confidence Bound applied to Trees (UCT) (Kocsis & Szepesvári, 2006)  
selection rule to balance exploration-exploitation trade off. The equation below specifies how the value for 
each node is calculated. The node with the highest estimated value is selected. 

𝑉𝑖 = 𝑥𝑖 + 𝐶√
ln(𝑛𝑝)

𝑛𝑖
  (4) 

 

𝑉𝑖 is the estimated value of the node i, 𝑥𝑖 is the empirical mean value of the node i, C is a constant used for 

balancing between exploitation and exploration, and 𝑛𝑖 and 𝑛𝑝 are the number of times the node i and its 

parent have been visited, respectively. A typical value for the C in game playing is 
1

√2
. This value is found to be 

optimal when the rewards remain within the range [-1, 1]. To avoid the hyperparameter search for this variable 
in the demand-side flexibility management we adopted the approach where the rewards are scaled so that 
they remain within the range [-1, 1] as much as possible. The scaling factors were estimated by running a fixed 
setpoint policy with historical data. 

In the expansion step the search space (tree) is expanded with new node. This step is executed unless the 
leaf node is the last time step in the optimization window. The new node is created by randomly choosing an 
action (i.e., set point) and sampling a valid action with the hybrid models. 

The purpose of the simulation step is to evaluate the value of the current state (and consequently its parents 
states). To this end, a rollout from the new node, expanded in the previous step, is completed. The rollout 
consist of sampling new states, using a simulation policy, until the end of the optimization window is reached. 
Instead of using the typical random policy as the simulation policy, the AFM modules simulates with a fixed 
policy based on the default control strategy (e.g. fixed set point for temperature). The fixed setpoint policy is 
used, because it is more likely policy than random sampling and provides thus more accurate estimate for the 
state values. 

In the backpropagation step the empirical value (𝑥𝑖) of the nodes are updated or initialized based on the 
results obtained from the simulation step. Only values for the tree are updated (i.e., no values for states beyond 
the three that were visited during the simulations step). 

 

Figure 6. Monte Carlo Tree Search. Reprinted from Image from An Introduction: Reinforcement Learning by Sutton & 
Barto (Sutton & Barto, 2018) 

MCTS executes iteratively the abovementioned steps until the time allocated for optimization runs out. Every 
iteration is started from the root node (i.e., current state of the system). Finally, the action with highest empirical 
value to be executed from the root node is selected. After the environment transitions to a new state, MCTS is 



 D3.9 Final automated flexibility management module 
 

 

Document version: 1.0 Page 14 of 41 Submission date: 2023-10-31 

run again starting with a tree containing any descendants of the new state (i.e., node) left over from the tree 
constructed by the previous execution of MCTS.  
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5 Implementation 

5.1 Overview 

The AFM module is implemented with Python programming language. Code implementation follows object-
oriented programming paradigm and is overall designed with expandability in mind. Interfacing with other 
modules is done via MQTT protocol, using the Eclipse Paho MQTT Python client library. Data between 
software modules is transferred in Pandas DataFrame format, serialized to JSON notation. Various run 
parameters are specified in a separate configuration file, where data polling, flexibility evaluation, planning and 
control intervals are set as well as paths and MQTT topics are configured.  

5.1.1 Software architecture 

A Unified Modelling Language (UML) class diagram of the AFM implementation is depicted Figure 7. The 
implementation consists of five classes: AFM, EnergyPlanner, Resource, MqttInterface and OperationTimer.  

 

Figure 7: UML class diagram for the Automated Flexibility Manager. 

The AFM class represents the whole Automated Flexibility Manager entity. To setup the AFM for a new 
consumer an instance of this class is created. The documentation of the class is represented below. 

 

class AFM(flex_resource, cfg=None) 

Automated Flexibility Manager. 
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Parameters 

flex_resource : resource.resource 

Instance of the resource class. 

cfg : dict 

Config for the AFM instance. 

Methods 

def run(self, only_log_exceptions=True) 

Main loop for the Energy Planner 

Parameters 

only_log_exceptions : bool 

If true exceptions are only logged (not raised). 

The EnerPlanner class represent the Energy Planner component of the AFM architecture. The documentation 
of the class is represented below: 

class EnergyPlanner(flex_resource, cfg=None) 

Energy Planner component of the Automated Flexibility Manager. 

Parameters 

flex_resource : resource.resource 

Instance of the resource class. 

cfg : dict 

Config for the AFM instance. 

Methods 

def fetch_consumption(self, now) 

Fetches consumption data. 

Parameters 

now : Datetime 

Current time. 

Returns 

dict - Dictionary of Dataframes (a DF for each energy vector). DF contains the consumption 

data. 

 

def forecast(self, now, activations) 

Forecast the baseline and flexibilities. 

Parameters 

now : Datetime 

Current time. 

activations : dict 

New DR activations. Dictionary of DataFrames for each energy vector. 
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Returns 

dict - Dictionary of Dataframes (a DF for each energy vector). DF contains the forecast. 

 

The Resource class represents the consumer. In the current implementation the whole consumer (i.e., people, 
building, flexible assets, local production) is represented as a single resource. The Resource class implements 
the controllers for each flexible asset. It also provides the EnergyPlanner with baseline and flexibility forecasts 
by acting as an interface to the Digital Twin Repository. The implementation of this class is consumer specific 
and only an abstract class (defining the interface) is implemented as part of the generic AFM library. The 
documentation of the class is represented below: 

class Resource 

This is a blueprint for the flexible assets and baseline loads. 

In the current implementation the whole consumer premises needs to be implemented as a single 

resource. (i.e., not possible to divide the consumer into several resources). 

Methods 

def consumption(self, start, end) 

Returns consumption between start and end in the market resolution. 

Parameters 

start : datetime.datetime 

Start of the period. 

end : datetime.datetime 

End of the period. 

Returns 

DataFrame - DF with consumption columns for each energy vector, e.g. [ele_load, dh_down] 

 
def control(self, now, fixed_load) 

Sends control commands to the flexible resource to follow the load plan. 

Parameters 

now : datetime.datetime 

Current datetime. 

fixed_load : dict 

Dictionary of fixed loads (series) for every energy vector. Fixed loads represent loads planned 

by the AFM which need to be followed by the resource. 

 

def forecast(self, now, start, end, fixed_load) 

Forecasts the baseline and flexibilities. 

Only down flexibilities are provided in the current version. 

Parameters 

now : datetime.datetime 

Current datetime. 
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start : datetime.datetime 

Start of the forecast period. 

end : datetime.datetime 

End of the forecast period. 

fixed_load : dict 

Dictionary of fixed loads (series) for every energy vector. Fixed loads represent loads planned 

by the AFM which need to be followed by the resource. 

Returns 

DataFrame - Forecast represented as a dataframe with following columns 

[_baseline, __down] 

 

The MqttInterface class implements the MQTT interface of the AFM module. The documentation of the class 
is represented below: 

class MqttInterface(client_id, client, carrier, freq) 

Parameters 

client_id : str 

The MQTT client identifier 

client : 

The MQTT client instance. 

 

carrier : {'ele', 'dh'} 

The energy vector/carrier. 

freq : int 

The sampling rate of the data shared via the interface. 

Methods 

def publish_forecast(self, now, forecast_df) 

Publish baseline and flexibility forecast to MQTT. 

Parameters 

now : Datetime 

Current time. 

forecast_df : DataFrame 

DataFrame containing the baseline and flexibility forecasts. 

def publish_load(self, now, load_df) 

Publishes the measured load info to the MQTT broker. 

Parameters 

now : Datetime 

Current time. 

load_df : DataFrame 
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DataFrame containing the energy measurement. 

def subscribe_activations(self) 

Subscribes explicit demand response activation messages. 

The OperationTimer class represents timers that are used to synchronize the operation of the Energy Planner.  

The documentation of the class is represented below: 

class OperationTimer(now, freq) 

Parameters 

now : datetime.datetime 

Current time. 

freq : int 

Update frequency (sampling rate) of the timer. 

Methods 

def interval_passed(self, now) 

Check whether the interval has passed. 

Parameters 

now : datetime.datetime 

Current time. 

Returns 

bool 

Boolean indicating whether the interval has passed. 

def reset_timer(self, now) 

Resets the time to start counting from now. 

Parameters 

now : datetime.datetime 

Current time. 

class Time(tz='UTC', update_freq=1, simulation=None) 

This class is used to allow either simulated or real-time to be used. 

Parameters 

tz : str 
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Timezone. 

update_freq : int 

Update frequency. 

simulation : dict or None 

Simulation specific data. None if timer is used for real-time operation. 

Methods 

def now(self) 

Get the current time. 

Returns 

Datetime - Current datetime. 

5.1.2 Use cases 

5.1.2.1 Offer flexibility 

Flexibility refers to the potential to deviate from a baseline load at different time periods. The baseline load in 
turn is the power load that would ensue without explicit or implicit demand response. Flexibility can be used to 
either increase or decrease consumers’ baseline load. The potential to decrease the baseline is called down 
flexibility and the potential to increase up flexibility. The amount of down and up flexibility are presented more 
formally in equations ( 5 ) and ( 6 ), respectively. 

 𝐷𝑖 = 𝐶𝑖
𝑏𝑎𝑠𝑒 − min (𝐶𝑖

𝑐𝑡𝑟𝑙) ( 5 ) 

 𝑈𝑖 = max (𝐶𝑖
𝑐𝑡𝑟𝑙) − 𝐶𝑖

𝑏𝑎𝑠𝑒 ( 6 ) 

Where 𝐷𝑖 is the down flexibility and 𝑈𝑖 the up flexibility at time step 𝑖, 𝐶𝑏𝑎𝑠𝑒 is the baseline consumption and 

𝐶𝑐𝑡𝑟𝑙 is the consumption obtained through DR control inputs. For simplicity reasons, we only consider the 
maximum flexibility value for each direction (up or down) in each time step. Even still, calculating the maximum 
amount of flexibility for each time step is not trivial. If we want to evaluate all possibilities, we would need to 

calculate ∑ 𝑛𝑖  𝑟
𝑖  options, where n is the number of control options, r is the length of the forecast and 𝑖 is the 

current time step. In practice this exponential growth implies that for any forecasts longer than a couple of 
steps it is impossible to use brute force (calculate all possible trajectories), so instead a heuristic or algorithm 
is used to reduce search space. One option is to perform control only in the step that is being evaluated while 

leaving the other as is. This approach reduces the number of iterations from ∑ 𝑛𝑖  𝑟
𝑖 to 𝑟 ∗ 𝑛, which is much more 

feasible to calculate in short time. 

Figure 8 depicts the flexibility evaluation process that is initiated by a timer (the OperationTimer is omitted from 
the figure for the sake of clarity). The EnergyPlanner first requests the baseline load and flexibility from each 
Resource (only one resource per site is supported in the current implementation). The Resource calls the 
relevant models from the Digital Twin Repository to predict the baseline, minimum and maximum loads. This 
information is then returned to the AFM class that calls the MqttInterface to send the flexibility and baseline 
forecast to the Aggregation & Market Interface module. 
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Figure 8. Sequence diagram of the flexibility offering process. 

5.1.2.2 Optimize schedule consider prices and/or incentives 

The schedule optimization use case covers both implicit and explicit demand response. In both cases the 
schedule optimization can be divided into two distinct parts: planning and control. The EnergyPlanner class is 
responsible for the planning while the control is implemented by the Resource class (i.e., Controller is 
embedded into the Resource class). The planning part is slightly different in implicit and explicit DR. The control 
part, focusing on following the load plan specified by the EnergyPlanner, is executed in the same way in implicit 
and implicit DR. Figure 9 illustrates the implicit DR optimization process.  

 

Figure 9: Sequence diagram depicting the implicit DR optimization. 

The optimization is initiated by a timer in the AFM class (OperationTimer class is omitted from the figure for 
the sake of clarity) that synchronizes the implicit DR optimization at fixed intervals (defined in the AFM 
configuration file). The EnergyPlanner class is the main responsible for planning the optimal schedules for 
each Resource. It first fetches the energy and network tariffs from the A&M Interface and then requests the 
baseline and flexibility forecast from the Resource. How the baseline and flexibility forecast are formed 
depends on the type of resource. In this example, the Resource first fetches user preferences from the user 
interface component. Then it generates schedule proposals matching the user preferences and request load 
profiles from the Digital Twin Repository (i.e., DTR) module. The EnergyPlanner then utilizes the baseline and 
flexibility forecast to find optimal load profile for each Resource (remember that only one Resource is supported 
in the current implementation). The optimal load profile is the one that minimizes the cost function. It should 
be noted that the term cost refers to the total value of the cost function (consumer specific) and can in theory 
include non-monetary parameters such as CO2 emissions.  

Figure 10 represents the explicit DR optimization process. This example assumes that manual acceptance is 
not required from the end-user in this case. From the AFM point of view the scenario is initiated by the 
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Aggregator and Market Interface. It utilizes the MQTT interface of the AFM module to notify about the explicit 
DR activation. Next, the AFM requests the EnergyPlanner to optimize a new load profile that matches the new 
flexibility activations. In this example this is done by requesting the Resource to forecast a load plan matching 
the activations. Finally, the AFM notifies the A&M Interface about the flexibility activation. 

 

Figure 10: Sequence diagram illustrating explicit DR signal and schedule optimization. 

The control part of the optimization process is represented in Figure 11. In the same way as the other 
operations, the control is initiated by a timer in the AFM class. The AFM class then request the optimized load 
plan from the EnergyPlanner and request the Resource to follow the load plan. The Resource class then 
calculates the set point (control command) that provides the closest response to the optimized load plan. The 
Resource could utilize the models in DTR to search for optimal set point but in this example is considered to 
be simple enough so that this is not needed. 

 

Figure 11: Sequence diagram illustrating the control process. 

5.1.3 Interface provided by the Automated Flexibility Management module 

Automated Flexibility Manager provides an MQTT interface for accessing forecasts and activating flexibilities. 
This interface can be utilized e.g., by an aggregator. JSON is utilized for serializing the payloads. All 
timestamps in the payloads are presented in ISO format. All loads are presented in kW and represent the 
average load during the sampling period. Table 1 introduces the MQTT topics that form the AFM interface.  

Table 1. MQTT topics of AFM interface. 

Interface Topic Message 
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Flexibility potential afm/<ifa_id>/<energy_vector>/flexibility A 

Explicit flexibility activation afm/<ifa_id >/<energy_vector>/activation B 

Load measurement afm/<ifa_id >/<energy_vector>/load C 

Flexible asset schedule afm/<ifa_id >/<asset_id>/schedule D 

 
As can be seen from Table 1, there are following parameters in the MQTT topics: ifa_id and energy_vector. 
The ifa_id parameter is a unique identifier for the iFLEX Assistant. The energy_vector specifies the energy 
vector for associated flexibility forecast, activation and measurements. Currently supported energy vectors 
include electricity (represented with keyword ele) and district heating (represented with keyword dh). 

  

Figure 12. Examples of the MQTT topic instances. 

Figure 13 presents an example of the Message A format. This serialization format was selected as it can be 
easily extended with new parameters. It is also directly supported by Pandas data frame JSON serialization 
methods so it is easy to implement in practise. The Message A consist of header and data fields. The header 
field consists of sentAt, and freq fields documented in Table 2. The data field consist of a list of JSON object 
literals with following attributes: timestamp, baseline, down, up, capacity, and allocated_flexibility. The 
semantics of these attributes is presented in  

Table 3. The down and/or up attributes can be omitted if flexibility to that direction is not provided by the given 
AFM. 

Table 2. Attributes of the Payload A header. 

Parameter Description 

sentAt The timestamp of when AFM sent the message.  

freq Sampling rate of the data in minutes. 

 

Table 3. Attributes of a JSON object literal contained in Payload A. List of these structures is stored in the data attribute 
of the message. 

Parameter Description 

timestamp 

Start time of the period that the forecast targets (ISO 
format). End time can be calculated based on freq 
parameter present in the message header. 

baseline 

Forecasted load of the metering point (e.g., building) 
if the current control plan is followed. Flexibilities that 
are activated will modify the baseline. The values are 
represented in kW are refer to the average power 
during the time period. 

down 

Down flexibility provided for the given time period 
(kW). Down flexibility means reduction of the load 
with respect to baseline in the same forecast 
message. 

afm/hoas/ele/flexibility 
afm/hoas/ele/load 
afm/hoas/ele/activation 
afm/hoas/dh/flexibility 
afm/hoas/dh/load 
afm/hoas/dh/activation 
afm/hoas/heat_pump/schedule 
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up 

Up flexibility provided for the given time period (kW). 
Up flexibility means increase of the load with respect 
to baseline in the same forecast message. 

down_capacity 

The capacity (kWh) for the down flexibility in the 
given period. The down capacity represents the total 
energy down flexibility starting from the given period. 
The down capacity can be used to estimate the 
number of consecutive down flexibility periods that 
can be activated.  

up_capacity 

The capacity (kWh) for the up flexibility in the given 
period. The down capacity represents the total 
energy down flexibility starting from the given period. 
The down capacity can be used to estimate the 
number of consecutive down flexibility periods that 
can be activated. 

allocated_flexibility 

Used to represent how much flexibility has been 
allocated. Negative value indicates down flexibility 
(decrease compared to the old baseline) and 
positive up flexibility. The purpose of this parameter 
is mainly to notify the aggregator on how much 
flexibility the AFM estimates to be able to obtain. It 
should be noted that this attribute does not provide 
any new information that cannot be obtained by 
comparing different forecasts (its purpose is mainly 
to provide all the relevant information without the 
need to track previous forecasts).The flexibility 
allocation is taken into account in the baseline (i.e., 
the baseline is modified with respect to the 
allocation) and this attribute basically reflects the 
change compared to the previous baseline forecast 
before the modification. 

 
Eight-hour forecast is illustrated in the example. Only down flexibility is presented in the example. In addition 
to the baseline and down flexibility forecast, each timestamp contains an allocated_flexibility field, which 
documents the flexibilities that will be activated by the AFM. The flexibility can be activated via the Flexibility 
activation interface. Message B documents the activation payload. 
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Figure 13. Payload A: Baseline and flexibility forecast payload. 

Figure 14 illustrates the Message B, which is used in Flexibility activation messages. It contains following attributes: 
sentAt, startTime, endTime, and delta. The semantics of these attributes are elaborated in Table 4 
 

Table 4. Attributes of the Payload B. 

Parameter Description 
sentAt The timestamp (ISO format) when AFM sent the message. 

startTime The start time (ISO format) of the flexibility event. 

endTime The end time (ISO format) of the flexibility event. 

accepted 

Optional attribute. List of appliances that user has authorized to 
be controller outside of their preferences. This is needed to inform 
the AFM that is should process an event happening outside of the 
user preferences. 

delta 
Specifies the change to the power when compared to baseline in 
the selected period. I.e., negative values indicate decrease to the 
building’s load profile. 

{ 
  "sentAt": "2022-02-18T16:00:00+00:00", 
  "freq": 60, 
  "data": [ 
    { 
      "timestamp": "2022-02-18T16:00:00.000Z", 
      "down": 0, 
      "down_capacity": 0, 
      "up": 0, 
      "up_capacity": 0, 
      "baseline": 71.767955924, 
      "allocated_flexibility": 0 
    }, 
    { 
      "timestamp": "2022-02-18T17:00:00.000Z", 
      "down": 0, 
      "down_capacity": 0, 
      "up": 0, 
      "up_capacity": 0, 
      "baseline": 71.0991792252, 
      "allocated_flexibility": 0 
    }, 
    { 
      "timestamp": "2022-02-18T18:00:00.000Z", 
      "down": 0, 
      "down_capacity": 0, 
      "up": 0, 
      "up_capacity": 0, 
      "baseline": 74.0061196065, 
      "allocated_flexibility": 0 
    }, 
    { 
      "timestamp": "2022-02-18T19:00:00.000Z", 
      "down": 0.7579430686, 
      "down_capacity": 6.0387044812, 
      "up": 0, 
      "up_capacity": 0, 
      "baseline": 75.3614803299, 
      "allocated_flexibility": 0 
    } ] 
} 
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Figure 14. Payload B: Used in Flexibility activation messages. 

Figure 15 presents an example payload for load measurement messages. It contains the same header field 
(see Table 2) as Message A. The data attribute consists of a list of JSON object literals with timestamp and 
load attributes.  

 
Figure 15. Payload C: Used in Load measurement messages. 

Message D consists of a header field (with sentAt attribute) and a payload field called commands. The 
commands attribute consists of a list of JSON objects whose parameters are described in Table 5, 

Table 5. Attributes of the Message D. 

Parameter Description 
sentAt The timestamp of when AFM sent the message. 

commands 
A list of command objects. Each command object contains a 
start, end, and setpoint attributes. 

start The start time of the command. 

end The end time of the command. 

setpoint The set point of the command. 

 

An example for the Message D is depicted in Figure 16. 

 
Figure 16. Example of the Message D, used in flexible asset schedule messages. 

5.2 Instantiations 

5.2.1 Instantiation in the Finnish pilot 

5.2.1.1 Apartment building 

The apartment building consists of 93 residential apartments, each monitored for thermal comfort and air 
quality. All apartments share infrastructure for heating and domestic water. In addition, other notable 
(consumption related) infrastructure includes an elevator and a common sauna. The building is also equipped 
with a building automation system, including a building energy management system (BEMS). 

{"sentAt": "2022-05-01T14:32:41.864590+00:00", 
 "startTime": "2022-05-01T11:00:00+00:00", 
 "endTime": "2022-05-01T12:00:00+00:00", 
 ”accepted”: [], 
 "delta": -105.3111965137} 

{"sentAt": "2022-05-01T01:00:58+00:00", 
 "freq": 60, 
 "data": [{"timestamp": "2018-02-17T23:00:00.000Z", "load": 110.0}]} 

{ 
    "sentAt": "2022-02-18T12:00:58+00:00", 
    "commands": [ 
        { 
            "start": "2022-02-18T12:00:00+00:00", 
            "end": "2022-02-18T12:30:00+00:00", 
            "setpoint": 1.0 
        }, 
        { 
            "start": "2022-02-18T12:30:00+00:00", 
            "end": "2022-02-19T12:00:00+00:00", 
            "setpoint": 0.0 
        } 
    ] 
} 
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The flexibility is provided by a centralized heating system that is responsible for space heating and heating of 
the domestic hot water (DHW). In practice, controlling heating and ventilation is done via actuating several 
components in the heating system, including valves, water pumps and heat exchangers simultaneously. To 
simplify control options, these controls are bundled into different control “modes” which are designed by human 
experts and stored in the Resource Abstraction Interface and the BEMS. The space heating can be controlled 
in three main modes. First, the space heating can be directly constrained by dropping the heating water 
temperature during a demand response event. How much this restricts the space heating in percentages is an 
identifiable parameter of the building’s digital twin. Please refer to D3.3 Final hybrid-modelling module for 
further details on the digital twin and modelling. Second, the heat pump can be turned off. This will put all the 
heat production (i.e., space heating and heating of domestic hot water) responsibility for the district heating. 
Third, the ventilation can be constrained during the DR event. When the ventilation is constrained, its power is 
reduced to 30% from the maximum. This can be done only when the heat pump is also turned off. Detailed 
documentation of these control points is provided in D4.3 - Final Resource Abstraction Interface. 

A simplified overview of the energy flows in the building is presented in Figure 17. In short, incoming heating 
energy is coming from the district heating network and from electricity that is used to heat apartment air. Within 
the system is an exhaust heat pump that captures energy from exhaust air back into apartment heating. 
Additionally, there is a water boiler in the system. 

 
Figure 17. Simplified view of heating energy flows in the pilot building. Red arrows represent energy inflows while blue 

arrows indicate energy outflows. 

 

A good selection of measurements is also available from the building. As with the control points, the full list of 
measurements is found in deliverable D4.3, but the most important are listed below: 

• Building level electricity consumption (1-minute sampling rate) 

• District heating consumption (1-minute sampling rate) 

• Average indoor temperature (5-minute sampling rate) 

• Weather forecast data from Finnish Meteorological Institute (60-minute sampling rate) 

Figure 18 visualizes the AFM instance that was deployed into the Finnish pilot in the phase 2 and updated in 
phase 3. 
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Figure 18. Functional view of the AFM instantiation in the Finnish pilot. 

The AFM module instance is configured to optimize the flexibility obtained from the heating system. It consists 
of single controller, called Heating controller, and the common Energy Planner component. The Digital Twin 
Repository consist of four types of models, including District heating baseline model, Electricity baseline model, 
Heating system model and Indoor temperature model. The Weather forecast interface provides interface for 
Finnish Meteorological Institute (FMI) weather forecast service. The Resource Abstraction Interface is 
implemented as an oBIX Database with mappings to the BEMS and interfaces to receive weather and CO2 
emissions data. 

5.2.1.2 Supermarket  

The supermarket contains many subsystems that have potential to be used as flexible assets. Currently only 
the heating system can be controlled. 

 

Figure 19. Simplified energy balance of the heating system. 

The heating system can be controlled by adjusting incoming water temperature to the heating equipment. 
Water coming from the heat exchanger and hot water tank are mixed to form the heating water flow. We control 
the temperature of this flow to enable flexibility. In practice, we use two settings to control the water 
temperature: 
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• Nominal heating – The heating system aims to provide the amount of heat that the equipment are 
asking 

• Restricted heating – We restrict all heat going to the heating equipment (The hot water storage will 
still be available to store extra heat from the heat pump) 

Measurement data is collected from the pilot to a data aggregation platform. Data resolution for the 
measurement points is 1 minute. Key measurements include: 

• Heat of the heat exchanger to the heating system 

• Heat to the heating equipment 

• Temperature of the hot water boiler (3 sensors) 

• Temperature of indoor air exhaust flow 

• Temperature of outdoor air 

•  
The AFM instance used has similar architecture as shown in figure Figure 18. The only differences lie in the 
digital twin repository. In this repository there are models for electricity consumption (for producing heat) and 
indoor air temperature. These models are described in more detail in D3.3. 

5.2.2 Instantiation in the Greek pilot 

In the Greek pilot the iFLEX Assistants (and associated AFM components) are tailored for single family houses 
in three locations: Athens, Thessaloniki and Volos. The flexibility in these households is provided by white 
goods that can be controlled remotely. From AFM perspective, the primary focus in on water boilers that can 
be controlled via a relay. In Greece, it is common for the people to heat the water in their boiler just before they 
take the shower. This is done by manually controlling a relay, and the storage capacity of the boiler is not 
typically utilized. The approach for demand side flexibility is based on rescheduling the assets without 
compromising user preferences. Users define their personal preference for asset schedule and the AFM 
component utilizes this to plan optimal schedules. Figure 20 illustrates this process and depicts the user 
preferences and schedule allocated by the AFM component. It also highlights the up and down flexibilities 
calculated based on the user preferences.  

 

Figure 20: Illustration of the flexible assets scheduling based on user preferences. 

 Figure 21 illustrates a functional view of the automated flexibility manager component instantiated for 
the Finnish pilot. The AFM component is tailored based on the DTR component, which consists of three main 
models. These models are utilized by the AFM for planning and optimizing flexibility management. These three 
key models include Electricity baseline model, Boiler model, and Water demand model. The Electricity baseline 
model is trained to forecast the non-flexible electricity demand at the consumer premises. The Boiler Model 
represents the heating power and capacity of a boiler deployed in the consumer premises. The boiler electricity 
consumption is measured separately which models it possible to model and forecast as an independent 
resource. The Boiler model is designed to work together with a Water demand model. The Water demand 
model is designed to forecast the water consumption (in terms of energy) based on temporal data, consumer 
preferences and learned behaviour of the consumer. 
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 Figure 21: Functional view of the AFM instantiation in the Greek pilot.  

  

The EnergyPlanner component is similar to the AFM instances in the other pilots. It utilises the Electricity 
baseline model to estimate the inflexible part of the baseline load. The flexible part of the baseline is provided 
by the Boiler model. The flexibility is calculated based on the user preferences, expected heating period, and 
expected heating power as illustrated in Figure 20. Only on/off control is utilized in the flexibility evaluation. It 
should be noted that in the Greek pilot there is no local optimisation or implicit DR incentives available. 
Therefore, the baseline load plan and associated schedule is implemented with a policy where the water heater 
is always heated as quickly as possible. If e.g., a spot price contract would be available the schedule would 
be optimized with respect to dynamic prices so that the costs are minimized.  

As described in section 4.1, there is a single controller for each flexible asset. In this example there is only a 
controller for the water boiler. The water boiler controller is responsible for realising the load plan scheduled 
by the Energy Planner. In this case the control is very simple to implement as the Boiler controller only needs 
to decide whether ‘On’ or ‘Off’ command is sent to the RAI. 

5.2.3 Instantiation in the Slovenian pilot 

In the Slovenian pilot the iFLEX Assistant is tailored for individual households. The households in the pilot are 
in Celje region. The D7.3 Final Pilot Specification gives more details on household regions’ properties. The 
primary source of flexibility in most households is a heating system. Some of the heating systems are installed 
together with a storage boiler. The boilers are of various capacities, some hold 900 or even up to 3000 litres 
of water. In addition to the boiler, the building envelope (thermal mass) is utilised as a source of flexibility 
besides household inhabitants’ tolerance to change of indoor temperature. Some of the households in the pilot 
have available RES generation in a form of a PV power plant. More information on household installations is 
available in the D4.3 - Final Resource Abstraction Interface. 

The AFM deployment for a typical site in the Slovenian pilot is presented in Figure 22. There are following three 
models in the DTR: Electricity baseline model, Heating system model and Indoor temperature model. These 
models have similar role as in the case of the Finnish pilot. Also, the heating controller is similar to the one 
utilised in the apartment building of the Finnish pilot. In the Slovenian pilot the control is executed by sending 
temperature set points to the thermostats in different rooms. The Energy Planner component is configured to 
support two types of use cases: explicit DR and self-optimization.  
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Figure 22: Functional view of the AFM instantiation in the Slovenian pilot. 

In the explicit DR use case the Energy Planner utilizes the heating system models to estimate the baseline 
and flexibility and provide the Aggregator and Market Interface with these forecasts. The forecast are utilized 
by the Aggregation platform for more optimal bidding in the Slovenian Day-ahead and intra-day markets. I.e., 
the goal is to acquire the energy as cost-efficiently as possible by moving the consumption (flexibility) into the 
cheaper hours. Only the technical feasibility of this use case is evaluated in the pilot.   

Self-optimisation will combine the household sources of flexibility either with the PV generation, if available at 
the household, or in combination with a tariff system to optimise the consumption according to the price of the 
energy. The self-optimisation in the case of storage boiler/building structure flexibility and the PV generation 
will look into utilising as much as possible of generated electricity for hearting of the house. The optimisation 
will utilise a capacity of the storage to store the heat at the times of high generation. The heat will be realised 
when needed, usually in the afternoon and in the evening, when outside temperatures drop. A brief example 
of such scenario is presented in Figure 23. In the figure two days of consumption are presented. On the left 
hand side a non-optimized day in January is shown. The self-consumption (denoted in sky-blue) is very low. 
The production, in green, is not properly used. The consumption in red happens in the morning and in the 
afternoon when the PV generation is no longer active. In the figure on the right-hand side an optimised day of 
consumption in March is presented. The afternoon consumption is at large shifted to the time of generation. 
The generation is much better utilised and afternoon consumption is more uniform than before. 

The self-optimisation case as described utilizes the following data in at least one hour granularity from a Digital 
twin repository, as is denoted in Figure 22: 

• Electricity consumption prediction: based on electricity baseline model a prediction of the household 
electricity consumption is needed for next 24 hours, 

• Heating demand prediction: based on heating system model a heating demand of the household 
needs to be provided for next 24 hours, 

• Generation prediction: based on generation model a prediction of PV generation for next 24 hours 
are needed, 

• Indoor temperature prediction: based on indoor temperature model an indoor temperature prediction 
for next 24 hours is needed, 

• Weather prediction: weather prediction for next 24 hours is needed. The predictions are obtained 
through weather forecast interface. Typical weather parameters needed are temperature and 
radiation. Weather prediction is needed for other predictions and not for AFM operation directly.   
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Figure 23: Self-optimisation in Slovenian pilot example, household flexibility and PV generation 

In a case of self-optimisation regarding the tariff changes the available flexibility is used to optimise the 
consumption regarding the price of energy. The tariffs can be either static network tariffs or dynamic electricity 
prices as are described in the deliverable the D4.6 - Final Market and Aggregation Interface Module. In any 
case the flexibility, either a storage boiler or household building structure thermal capacity, as described in 
D3.3,, is used to consume the energy and store heat at the times when the energy prices are low and avoid to 
consume energy at the time when the prices are high. In the case of network tariffs, the consumption is 
scheduled over the night (between 22:00 and 6:00) and the heat is used over the day or even afternoons and 
evenings, when the tariffs are high.  

In both cases of self-optimisations a type of flexibility available plays a crucial role in automated flexibility 
management implementation. In case of storage boiler the flexibility is more predictable and easier to exploit. 
The boiler can store the heat for a longer period of a time. The flexibility depends on capacity of the boiler. In 
the case when flexibility is obtained from household building thermal capacity the amount of flexibility can be 
smaller, the digital twin models could need some identification time before the model is accurate enough and 
the flexibility cannot be stored for a longer period of time. The automated flexibility management optimisations 
need to take into account that such flexibility cannot be retained for a longer period of time like in case of the 
storage boiler. 
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6 Conclusions 

This deliverable documented the third phase prototype of the Automated Flexibility Management. The AFM is 
a core functional component of the iFLEX Assistant. It optimizes energy management within the consumer 
premises to maximize consumer benefits while offering the available flexibility to power grid and energy system 
balancing.  

The AFM module is based in innovative approach that combines AI technologies with optimal control methods. 
The key idea in the approach is to apply model-based planning and control where ML is combined with physics-
based modelling to learn accurate and robust models of the consumers, their premises, including flexible 
assets. The AI-based control algorithms such as the MCTS is then applied for finding optimal control policies.  

The AFM control architecture consist of two types of components: single Energy Planner and one or more 
Controllers. The Energy Planner is responsible for maximizing consumer benefits by orchestrating the 
operation of individual Controllers. It plans the load profile for each Controller without a need to have detailed 
knowledge about the flexible assets. Each Controller is then responsible for following the load profile assigned 
by the Energy Planner.  

The AFM prototype described in this deliverable is implemented with Python programming language. The 
implementation consists of four core classes, including the AFM, EnergyPlanner, Resource and MqttInterface. 
The AFM is the central class the aggregates all other classes to realize the AFM instance. The EnergyPlanner 
realizes the Energy Planner component of the AFM architecture. The Resource class implements the 
Controller component and also acts as an interface to the Digital Twin Repository utilized for model predictive 
control. Only single resource per consumer is supported in the current prototype of the AFM module. The AFM 
module provides MQTT based interface which is implemented by the MqttInterface class. MQTT based API 
was chosen as it provides lightweight communication protocol based on publish and subscribe communication 
pattern. The AFM module is tailored for three different types of pilot sites, located in Finland, Greek and 
Slovenia.  
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8 Appendix: Jira requirements 

8.1.1 [IF-72] FN-AFM-04 Optimize flexibility based on prices (e.g. implicit demand 
response) Created: 15/Jun/21  Updated: 09/Oct/23  

Status: IMPLEMENTED 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Unresolved  Votes:  0  

Labels:  AFM  

 

Rationale: iFLEX Assistant needs to be able to optimize flexible assets schedule and/or setpoints 
in order to reduce end-user costs. This can include energy efficiency improvements 
and spot-price optimization  

Pilot Finland: Phase two  

Pilot Greece: Not applicable  

Pilot Slovenia: Phase three  

 

 Description     

The automated flexibility management module should provide mechanisms to optimize flexibility with 
respect to dynamic tariffs, possible across different energy vectors.  
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8.1.2 [IF-114] FN-AFM-06 Provide schedule information for the End-user Interface Created: 

09/Oct/23  Updated: 09/Oct/23  

Status: IMPLEMENTED 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Unresolved  Votes:  0  

Labels:  AFM  

 

Rationale: With resources such as the boilers in Greek pilot it is important to provide the user 
with a schedule.  

Pilot Finland: Not applicable  

Pilot Greece: Not applicable  

Pilot Slovenia: Phase two 

 

 Description     

AFM needs to publish a schedule for each resource (set points resources at different times) via its MQTT 
interface.  
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8.1.3 [IF-107] FN-AFM-05 Optimize flexibility locally (self-consumption, consumer load 
reduction) Created: 30/Jul/22  Updated: 14/Apr/23  Resolved: 14/Apr/23  

Status: Validated 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Validated  Votes:  0  

Labels:  AFM  

 

Rationale: The requirement comes mainly from the needs of the PUC 10: Increase self-balancing 
through forecasting and automation.  

Pilot Finland: Phase two  

Pilot Greece: Phase two 

Pilot Slovenia: Phase two  

 

 Description     

The AFM needs to support energy management policies for local control. This includes energy efficiency 
improvements (e.g. for cost and CO2 emission reduction) as well as self-consumption maximization 
(Slovenian pilot).  
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8.1.4 [IF-70] FN-AFM-02 Flexibility potential Created: 15/Jun/21  Updated: 14/Feb/22  Resolved: 14/Feb/22  

Status: Validated 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Validated  Votes:  0  

Labels:  AFM  

 

Rationale: Flexibility potential data is needed to provide more deterministic explicit demand 
response.  

Pilot Finland: Phase one  

Pilot Greece: Phase two  

Pilot Slovenia: Phase two  

 

 Description     

The automated flexibility management module should provide flexibility potential information to the A&M 
Interface module. The flexibility potential should be calculated by comparing the minimum and maximum 
loads to the baseline load profile at different time periods.  
 
The length of the flexibility window and the frequency should be configurable.  
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8.1.5 [IF-71] FN-AFM-03 Activate offered flexibility Created: 15/Jun/21  Updated: 14/Feb/22  Resolved: 

14/Feb/22  

Status: Validated 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Validated  Votes:  0  

Labels:  AFM  

 

Rationale: Flexibility activation is required in implicit and explicit demand response.  

Pilot Finland: Phase one  

Pilot Greece: Phase two  

Pilot Slovenia: Phase two  

 

 Description     

The automated flexibility management module should activate the offered flexibilities when requested via 
the A&F interface (assumes flexibility activation is authorized by the end-user).  
 
To activate the flexibility the AFM module needs to find an optimal control schedule by optimizing with the 
model provided by the digital twin repository. Once optimal schedule is found the flexibility is activated by 
modifying the local energy management system parameters.  

 
 

8.1.6 [IF-69] FN-AFM-01 Provide baseline forecasts Created: 15/Jun/21  Updated: 14/Feb/22  Resolved: 

14/Feb/22  

Status: Validated 

Project: iFlex Project  

Component/s: None  

Affects Version/s: None  

Fix Version/s: None  

 

Type:  Functional  Priority:  Major  

Reporter:  Jussi Kiljander  Assignee:  Jussi Kiljander  

Resolution:  Validated  Votes:  0  

Labels:  AFM  

 

Rationale: Baseline load profile is required to estimate and validate the flexibility at individual 
prosumer level. Prosumer/consumer specific baseline load profiles can be also used 
to calculate aggregated load profiles at different levels of the power system.  

Pilot Finland: Phase one  

Pilot Greece: Phase two  

Pilot Slovenia: Phase two  

 

 Description     
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The automated flexibility management module should provide information about the baseline load profile 
(including consumption and local production) of the prosumer/consumer.  

 
 


