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1 Executive summary 

The purpose of this deliverable is to report on the work carried out by Task 5.3 – Incentive mechanisms and 
consumer engagement, and particularly the work accomplished by this Task, following submission of D5.2. 
Within this period, the focus was primarily on the development, modelling, and assessment of economic 
incentive mechanisms for the three iFLEX pilots. A tailored approach was developed for each one of them due 
to their inherent differences. To this end, appropriate individual models regarding the economic incentive 
mechanisms and their analysis in this deliverable, together with the respective issues on the practical 
applicability of these mechanisms and with ideas for their combination with non-economic incentive 
mechanisms. 

In particular, for the Greek pilot, an approach for the optimal management of the flexibility offered by residential 
users under uncertainty is developed; indeed, such uncertainty in the consumer response to the Demand 
Response (DR) signals may disrupt the goal of demand flexibility management. Therefore, a probabilistic user 
model to account for the uncertainty regarding whether a user will indeed achieve the flexibility specified (in 
conjunction with the incentives offered to this user) is developed and is subsequently introduced in the DR 
targeting process. Then, a suitable optimization framework to enable flexibility maximization and budget 
minimization is specified, comprising separate single-objective expressions with the appropriate constraints. 
Moreover, specific representative problems are defined and solved numerically for a wide range of user 
parameters, in order to illustrate the applicability and accuracy of the method, and to extract valuable insights. 
Also, techniques to resolve practical issues and to enable real-world implementation of the proposed scheme 
in the pilot sites are developed; namely, a mathematical expression to estimate the confidence intervals of the 
attained flexibility and a learning algorithm for extracting the individual user parameters according to their 
participation patterns. Finally, practical issues on how to apply this approach in practice, and how to promote 
user engagement are defined, including the definition of appropriate lottery mechanisms motivated by prospect 
theory.  

For the Slovenian pilot, an optimization framework that provides different forms of economic and non-economic 
incentives to prosumers with their own renewable resources (as opposed to simply consumers, which is the 
case with the other two pilots) is specified; this includes rewards, lotteries, peer-pressure, for providing 
flexibility at specific time slots. Dynamic tariffs per time slot for purchasing and selling electricity are 
accommodated in this framework as well. The overall problem is formulated as a Stackelberg game, played in 
turns by the aggregator and the users, and its analytical solution for simple cases of user utility functions is 
outlined for the case of full information by the aggregator concerning user-utility functions. Moreover, a 
distributed iterative algorithm is developed for solving the flexibility-management problem in the case where 
these functions are not known to the aggregator. Numerical results show that this optimization framework is 
capable to elicit the required flexibility from users at a minimum incentive cost, especially when monetary 
rewards are combined with peer pressure. 

As for the Finnish pilot, flexibility is taken to emerge from the building’s heating system, and especially from 
the thermal mass of the building that can be used to store energy. Flexibility management is based on the 
assumption that when the heating is turned off the heat energy stored in the building can be utilized to provide 
flexibility before the indoor temperature drops below the contractually agree lower limit. Therefore, again an 
appropriate optimization problem is specified; namely, the objective is to maximize flexibility, while several 
factors are taken into account, such as internal temperature constraints, evolution of this temperature on the 
basis of external temperature forecast and thermal model of the building, and budget constraints incentives. 
The case of zero budget is also considered, motivated by the fact that users have agreed to the lower limit of 
the internal temperature. Numerical results reveal that even when this limit is not violated, the use of monetary 
incentive to compensate users for their discomfort leads to higher total flexibility. Issues on the practical 
implementation of the incentives’ scheme considered, such as a method for calculating the baseline load, are 
also discussed. 
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2 Introduction 

The purpose of this deliverable is to report on the work carried out in Task 5.3 – Incentive mechanisms and 
consumer engagement, namely, the work accomplished by this Task, following submission of D5.2. Within this 
period, the focus of Task 5.3 was primarily on the development, modelling, and assessment of economic 
incentive mechanisms for the three iFLEX pilots. A different approach was developed for each one of the three 
pilots due to their inherent differences. Appropriate individual models regarding the economic incentive 
mechanisms have been developed and analyzed. The respective practical issues have been identified and 
ideas are provided for the combination of economic and non-economic incentive mechanisms.  

The remainder of this deliverable is organized as follows: Chapter 3 contains the model of the incentive 
mechanisms for the Greek pilot, as well as a discussion on relevant practical issues. Chapter 4 contains the 
model of the incentive mechanisms for the Slovenian pilot, as well as a discussion on relevant practical issues, 
while Chapter 5 contains the model of the incentive mechanisms for the Finnish pilot, as well as a discussion 
on relevant practical issues. Finally, Chapter 6 contains concluding remarks.   
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3 Incentive mechanisms for the Greek pilot 

3.1 Modeling and analysis of economic incentive mechanisms 

3.1.1 User Modelling 

We consider a provider/aggregator targeting users for DR and offering incentives to them. We define a model 
regarding the uncertainty on whether the desired flexibility will indeed be attained by each of the targeted 
users. This model pertains particularly to the selection of DR incentives thereto for motivating a user to indeed 
refrain from using certain electrical devices. We assume that there are 𝑁 users, indexed 1, … , 𝑁. A subset of 
them will be targeted (i.e., selected) for DR. Thus, we define a binary variable yn per user, where 𝑦௡ = 1 if user 
𝑛 is targeted and 𝑦௡ =  0 otherwise.   

If user n is indeed targeted for a certain DR event concerning a particular time slot, then he is offered incentives 
𝑟௡, in order to meet a demand flexibility (i.e., reduction of consumption in a particular time-zone) equal to 𝑥௡, 
which is different per customer 𝑛 and depends on his load consumption profile. We assume that the demand 
flexibility 𝑥௡ requested by user 𝑛 (e.g., turn-off an electric device for a time period) does not depend on the 
offered incentives, but on his baseline consumption schedule.   

In this model, the user is faced with two choices: either to accept the offered incentives 𝑟௡ and indeed provide 
the flexibility 𝑥௡, or to reject the incentives and maintain his consumption schedule. According to (Minou et al, 
2015), if the DR incentives cover user’s discomfort (i.e., loss of utility) due to not using certain loads, discounted 
by the savings in the energy bill, if 𝑟௡ ≥ 𝑁𝐵𝑙𝑜𝑠𝑠(𝑛) (i.e., loss of Net Benefit due to DR), then participation in the 
DR event is the optimal decision for the user. Therefore, ideally, we can define the minimum acceptable 
incentives of user n, henceforth denoted as 𝑟୫୧୬ (௡), and take that the probability 𝑝௡(𝑟௡) for user 𝑛 to participate 
in the DR event is a step function, rising from 0 to 1 at 𝑟௡ =  𝑟୫୧୬ (௡).  

In order to incorporate uncertainty in our analysis, and thus make it more general, we take the outcome of DR 
as an outcome of a Bernoulli trial, with a success probability 𝑝௡(𝑟௡) that depends on the economic incentives. 
In case of failure in this trial, we take that user 𝑛 does not participate in DR, and thus he does not attain any 
flexibility and he is not paid the incentives 𝑟௡ initially offered to him, and vice versa. This participation-probability 
function should have the following properties: (1) 𝑝௡(𝑟௡) is increasing, continuous and differentiable in the 
incentives 𝑟௡, (2) 𝑝௡(0) = 0 and 𝑝௡(∞) = 1, and (3) 𝑝௡(𝑟௡) ascends steeply from low to high values around 
𝑟୫୧୬ (௡).  

Therefore, 𝑝௡(𝑟௡) constitutes a smooth approximation of the step function discussed above. Employing such a 
function rather than the unit-step function also allows for cases where the user can accept (resp. reject) 
somewhat lower (resp. higher) incentives than 𝑟୫୧୬ (௡) since his discomfort by not using the electrical device at 
the specific time slot can occasionally be slightly lower (resp. higher).  A function possessing all of the above 
properties is the sigmoid function. For a user n with minimum acceptable incentives 𝑟୫୧୬ (௡), we can take that: 

𝑝௡(𝑟௡) =
1

1 + 𝑒ି ௔೙൫௥೙ି௥೘೔೙,೙൯
 (1) 

which is a slightly modified version of the sigmoid function, for which 𝑝௝(𝑟୫୧୬ (୬)) = 1/2 regardless the value of 
𝑎௡ , which however determines how steeply the function rises. In particular, the larger 𝑎௡, the steeper the 
function. Figure 1 illustrates the function shape according to various 𝑎௡ values.  

 
Figure 1: Modified sigmoid function for various values of a 



 D5.3. iFLEX consumer engagement and incentive mechanisms 
 

 

Document version: 1.0 Page 8 of 51 Submission date: 2022-09-30 

3.1.2 Optimization Framework 

The optimization problems of the flexibility aggregator can now be specified. We take that the latter has a total 
budget B available for DR incentives. His objective is to maximize the expected total flexibility 𝑋ா, without 
exceeding the total DR incentives budget: 

max ෍ 𝑦௡ ∙ 𝑥௡ ∙ 𝑝௡ (𝑟௡)
௡

𝑠. 𝑡.  𝑦௡  ∈  {0,1} 𝑎𝑛𝑑  ෍ 𝑦௡ ∙ 𝑟௡
௡

≤ 𝐵
(2) 

where 𝑦௡ for 𝑛 = 1, … , 𝑁 constitute binary decision variables for targeting user n and 𝑟௡ are the incentives 
offered to user n. For obvious reasons, we assume that a user n that is not targeted (i.e., if 𝑦௡ = 0) is offered 
no incentives (i.e., 𝑟௡ = 0). By monotonicity, the budget constraint will be met with equality under the optimal 
solution.  

Extracting the optimal targeting by solving the above problem may prove a conservative and “generous” 
approach for the provider. Indeed, certain targeted users may ultimately decide not to accept the incentives 
offered and/or not meet their DR objective and thus rightly not be rewarded by the provider. In such a case, 
part of the total DR incentives budget would be left unused. To improve on this, we consider alternatively a 
looser constraint, restricting the expected total DR incentives actually paid. For simplicity, we refer to this metric 
as the expected total DR incentives, or the expected total reward. The optimization problem becomes:  

𝑚𝑎𝑥 ෍ 𝑦௡ ∙ 𝑥௡ ∙ 𝑝௡ (𝑟௡)
௡

  

𝑠. 𝑡. ෍ 𝑦௡ ∙ 𝑟௡ ∙ 𝑝௡(𝑟௡)
௡

 ≤  𝐵
 (3) 

The optimal solution of the previous problem is clearly a feasible solution of the problem with the less tight 
constraint. Therefore, a higher 𝑋ா can now be attained. However, it is possible that the total reward actually 
paid occasionally exceeds the threshold B.  

An alternative (dual) optimization problem is to seek for the minimum expected total DR incentives (reward) 
that is necessary for the flexibility aggregator to meet a particular threshold 𝑋 for 𝑋ா. This problem is formulated 
as follows: 

min ෍ 𝑦௡ ∙ 𝑟௡ ∙ 𝑝௡(𝑟௡)
௡

𝑠. 𝑡.  ෍ 𝑦௡ ∙ 𝑥௡ ∙ 𝑝௡ (𝑟௡)
௡

≥ 𝑋
 (4) 

Similarly, to the above, it is possible that 𝑋ா is occasionally lower than the desired level 𝑋.  

The above optimization problems and the relevant trade-offs can be considered simultaneously by studying a 
multi-objective scheme. In particular, they can be formulated together in a two-criteria optimization problem, 
where the first criterion is the maximization of the total expected flexibility obtained and the second criterion is 
the minimization of the expected total reward 𝐵ா  (or alternatively of the incentives budget): 

൜
max 𝑋ா

min 𝐵ா
 ⇒ ቐ

max  𝛴𝑛 ൣ𝑦𝑛 ∙  𝑥𝑛  ∙  𝑝𝑛
(𝑟𝑛)൧

min 𝛴𝑛[ 𝑦
𝑛

∙  𝑟𝑛 ∙  𝑝𝑛
(𝑟𝑛)]

 (5) 

This way, we can obtain the optimum values of each criterion separately, and all the non-dominated criteria 
values in-between. The non-dominated values will correspond to the best compromises between the extreme 
values of the criteria. The results will provide input for their further post-processing and will shed light on the 
solutions of the single-objective problems. The Pareto-front shape of the solutions may reveal a saturated 
relationship between the optimal solutions, indicating that significant improvement in one of the two criteria 
does not lead to significant loss to the other. With such higher-level information one could decide e.g. to go for 
a slightly lower total flexibility value if that would bring a significant reduction in the incentives budget. Moreover, 
the Pareto-front shape could also involve various interchanging regions of linear and saturated nature. This 
could be an indicator of the regions where uncertainty in the decision space may have a bolder effect on the 
objectives. These considerations stem mainly from the fact that the criteria are independent and the entity in 
charge of the decision-making may change his initial perspective on the importance of each objective 
according to the results. 
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3.1.3 Analysis 

Below, we present special cases of the above problems to be studied first. Our main objectives have:  

 to characterize the optimal targeting policies and the impact of certain parameters to the optimal values 
of the objective function under certain assumptions on the user model; 

 to assess the extent of the positive impact of additional information possessed by the provider to the 
optimal value of the objective function; 

 to assess the extent of the positive impact of additional information to the user’s well-being.  

The latter two objectives, if met, aim to demonstrate the benefit for the user and the provider of employing the 
iFLEX assistant. Or in general of approaches that attain, convey and/or learn information that is not completely 
known to the provider.  

Below we define certain specific models, with simplifying assumptions, as starting point for our analysis. The 
relevant optimization problems can be analyzed either in their two-objective version or as a single-objective 
primal or dual. For brevity reasons, we only present the single-objective primal. 

3.1.3.1 Problem 1: Symmetric users 

In the first investigation, users are considered symmetric, i.e.  𝑥௡  =  𝑥, 𝑟୫୧୬ (௡) = 𝑟௠௜௡ , 𝑎௡ =  𝑎, which implies 
that 𝑝௡(. ) = 𝑝(. ). The problem of maximizing 𝑋ா for a given incentives budget amounts to deriving the optimal 
number 𝑛∗ of users to be targeted and the optimal reward 𝑟∗ to be offered to each of them, is given by:  

max  𝑥 ∙ 𝑛 ∙ 𝑝(𝑟)
s. t.  𝑛 ∙ 𝑟 ≤ 𝐵, 𝑛 ∈  ℕ

 (6) 

because, at the optimal point, due to symmetry, all targeted users should be offered the same incentives 𝑟. 
Clearly, 𝑛∗ and 𝑟∗ are constrained by 𝐵 and depend on the parameters 𝑟௠௜௡  and 𝑎 of the sigmoid participation 
probability function. Next, we investigate the dependence and the monotonicity properties of 𝑛∗ and 𝑟∗ on 𝑟௠௜௡ 
and 𝑎. 

Figure 2a and Figure 2b depict the relationship of 𝑛∗ and 𝑟∗ with 𝑎, respectively, for different values of 𝑟௠௜௡. 
Figure 2a shows that when 𝑟௠௜௡ and 𝑎 both have low values, the max. 𝑋ா value is attained by targeting all the 
users. The number of targeted users decreases, however, as the probability function becomes steeper (𝑎 
rises) and 𝑟௠௜௡ increases. Figure 2b shows that the increase of 𝑟௠௜௡ also boosts 𝑟∗ for each user. As 𝑎 
increases, 𝑟∗ drops. Figure 2c and figure 2d exhibit how 𝑋ா relates to 𝑟௠௜௡ and 𝑎. Smaller values of 𝑟௠௜௡  and 
greater values of 𝑎 lead to superior flexibility. The value of 𝑟௠௜௡ has a deeper effect on 𝑋ா, than 𝑎. When 𝑎 is 
big, lower incentives are required to achieve the same amount of flexibility.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2: Relationship of (a)  𝑛∗ and (b) 𝑟∗ with 𝑎 for various values of 𝑟௠௜௡. Relationship of 𝑋ா with (c) 𝑟௠௜௡ for 
various values of 𝑎, and (d) 𝑎 for various values of 𝑟௠௜௡. 
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Next, we consider the problem of maximizing 𝑋ா with the alternative constraint concerning the expected total 
reward. The optimization problem is now defined as follows:  

max  𝑥 ∙ 𝑛 ∙ 𝑝(𝑟)

s. t.  𝑛 ∙ 𝑟 ∙ 𝑝(𝑟) ≤ 𝐵, 𝑛 ∈  ℕ 
(7) 

The relation of the maximum flexibility with parameters 𝑎 and 𝑟௠௜௡ is displayed in Figure 3. By employing the 
n∙r∙p(r) ≤ B constraint (Figure 3b) we achieve higher values of total flexibility on a wider span of probability 
function parameters compared to the flexibility attained under the constraint n∙r ≤ B. 

The relation of the ratio 𝑟∗/𝑟௠௜௡ with 𝑟௠௜௡  and 𝑎, is shown in Figure 4 for the two types of constraints regarding 
𝐵. It can be seen that the 𝑛 ∙ 𝑟 ∙ 𝑝(𝑟) ≤  𝐵 constraint involves optimal incentives that are less than the minimum 
acceptable ones (𝑟∗ < 𝑟௠௜௡) for the majority of considered parameters. In other words, this constraint leads to 
the counterintuitive and “risky” policy of offering low incentives to many users. This may also lead to significant 
budget overshoots in case more users than those expected actually participate in DR. On the other hand, 
under the 𝑛 ∙ 𝑟 ≤  𝐵 constraint, the optimal incentives are in general higher than the minimum acceptable ones 
(𝑟∗ > 𝑟௠௜௡). This constitutes a robust policy since each targeted user now has a high participation probability. 

3.1.3.2 Problem 2: Two distinct groups of users 

In this problem, users are considered to belong to two types (of identical users each), namely the “small” users 
with a low flexibility capability 𝑥௟௢௪  that also require low incentives 𝑟௟௢௪ , and the “big” ones with 𝑥௛௜௚௛ and 𝑟௛௜௚௛  
respectively; e.g. single-person households and family-households. For simplicity, we can take that 𝑎 is 
common regardless the type. It is interesting to study the properties of the optimal solutions of the optimization 
problems: Is it preferable to target many small users or a few big users? Or a mixture of users from both types?  

Such information can be considered as being provided by the iFLEX assistant, yet only in the case it is fed 
with detailed information about user parameters etc. To demonstrate the benefit of possession and exchange 
of such information when employing the iFLEX assistant, we can also consider the case where the provider-
side cannot distinguish to which type each user belongs. To make a fair comparison with the case where the 
group to which each user belongs can be identified, we take that in this case the provider knows the proportion 

 
(a) 

 
(b) 

Figure 3: (a) 𝑋ா with respect to 𝑟௠௜௡ and 𝑎, under the constraint 𝑛 ∙ 𝑟 ≤  𝐵, (b) 𝑋ா with respect to 𝑟௠௜௡ and 𝑎, under 
the constraint 𝑛 ∙ 𝑟 ∙ 𝑝(𝑟)  ≤  𝐵 

 

  

(a) (b) 
Figure 4: (a) 𝑟/𝑟௠௜௡ ratio with respect to 𝑟௠௜௡ and 𝑎, under the constraint 𝑛 ∙ 𝑟 ≤  𝐵, (b) 𝑟/𝑟௠௜௡ ratio with respect to 

𝑟௠௜௡ and 𝑎, under the constraint 𝑛 ∙ 𝑟 ∙ 𝑝(𝑟) ≤ 𝐵.  
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of users in each type, namely 𝑞௟௢௪  and 𝑞௛௜௚௛  =  1 − 𝑞௟௢௪ , the average flexibility 𝑥௠௘௔௡ = 𝑥𝑙𝑜𝑤 ∙ 𝑞
𝑙𝑜𝑤

+ 𝑥ℎ𝑖𝑔ℎ ∙

൫1 −  𝑞
𝑙𝑜𝑤൯.  

Note that for simplicity we take 𝑁௟௢௪  =  𝑁 ∙ 𝑞௟௢௪  and thus 𝑁௛௜௚ =  𝑁 ∙ (1 − 𝑞௟௢௪)  =  𝑁 −  𝑁௟௢௪  are both integers. 
Due to not knowing the exact type per user, the provider solves the optimization problems by considering that 
all users are identical, i.e., he takes that 𝑥௡ = 𝑥௠௘௔௡  and offers each targeted user the average of the optimal 
pair of incentives, i.e., 𝑟௡ = 𝑟௠௘௔௡ = 𝑟𝑙𝑜𝑤 ∙ 𝑞

𝑙𝑜𝑤
+ 𝑟ℎ𝑖𝑔ℎ ∙ ൫1 −  𝑞

𝑙𝑜𝑤൯, of the case that the user types can be 
distinguished. The benefit for the provider of being able to distinguish the user types can be quantified by 
comparing 𝑋ா to that of the previous case.  

Α numerical verification is conducted, regarding the comparison specified above. The parameter space is 
swept (as presented in Table 1), and the flexibility gains are observed as a percentage of the improvement of 
𝛸௲ when there is lack of knowledge of the user groups, assuming that the respective user groups can indeed 
be identified. Table 2 shows how the mean 𝑋ா gain varies according to the 𝑥௛௜௚௛/𝑥௟௢௪   ratio and 𝑁௟௢௪, and Table 
3 according to the 𝑟௠௜௡,௛௜௚௛/𝑟௠௜௡,௟௢௪   ratio and the parameter 𝑎 respectively. It can be seen that the 
𝑟௠௜௡,௛௜௚௛/𝑟௠௜௡,௟௢௪  ratio and 𝑁௟௢௪  have the highest impact on the flexibility gains when the user groups are known.  
It should be noted that the unused budget is always less than 2%, thus implying that high enough incentives 
(leading to high participation probability) are offered in general. Overall, the average 𝑋ா  improvement for the 
provider is 43% on the complete parameter map exploration, which implies that extraction of the user type by 
the provider is a very beneficial ability for him. 

 

Table 1: Parameter space boundaries with the respective step 

𝐏𝐚𝐫𝐚𝐦𝐞𝐭𝐞𝐫 𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 Upper bound Step 

xlow 1 - 
xhigh 4 6 1 
Nlow 200 800 200 
N 1000 - 

rmin-low 1 3 0.5 
rmin-high 3.5 5 0.5 

plow / phigh 10% 100% 10% 
rlow 1 5 0.1 
rhigh 3.5 7 0.1 

 
Table 2: Mean flexibility gains for specific parameter values 

𝐱𝐡𝐢𝐠𝐡 /𝐱𝐥𝐨𝐰 

𝐫𝐚𝐭𝐢𝐨 
𝑵𝒍𝒐𝒘 

Mean 𝑿𝑬 
gain in % 

3 200 10 
6 200 13 
3 400 26 
6 400 35 
3 600 49 
6 600 73 
3 800 76 
6 800 142 

 
Table 3: Mean flexibility gains for specific parameter values 

𝐫𝐦𝐢𝐧,𝐡𝐢𝐠𝐡/𝐫𝐦𝐢𝐧,𝐥𝐨𝐰 
ratio 

a 
Mean 𝑿𝑬 
gain in % 

<2 <1 31.8 
>2 <1 50.1 
<2 >1 32.7 
>2 >1 51.1 
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User benefit 

Next, we focus on estimating the benefit of employing the iFLEX assistant for the user, by utilizing certain 
metrics introduced below. It should be noted that this benefit is apparent because, by employing the iFLEX 
assistant, the user can participate in DR; for this purpose, the user feeds the iFLEX assistant with certain 
information. Thus, the interesting matter to investigate is whether the knowledge of detailed user information 
by the iFLEX assistant is always to the benefit of the user. This issue is investigated next. Again, all the 
numerical calculations are conducted for the same parameters’ space sweep (Table 1). Initially, we are 
calculating the expected incentives earned per “big” and “small” user in the cases where iFLEX assistant allows 
the groups to be distinguished and the cases where due to the incomplete user information shared with the 
iFLEX assistant, the latter does not enable differentiation of how the groups are treated. These expected 
incentives are calculated by the multiplication of the relevant incentives (𝑟௛௜௚௛ , 𝑟௟௢௪  and 𝑟௙௟௔௧ – where 𝑟௙௟௔௧   is the 
common incentive given in the case of non-differentiation of the groups) with the respective possibility of 
participation per group of users (𝑝௛௜௚௛ and 𝑝௟௢௪) and with the ratio of the targeted users of the “big” and “small” 
user groups to the total number of “big” and “small” users. The latter factor is employed because when user 
groups cannot be distinguished due to lack of the corresponding information by the iFLEX assistant, all users 
are considered by the provider as “identical” and thus those targeted are selected at random, with all users 
being equiprobable. Therefore, the relevant formulas are as follows: 

iFLEX assistant with detailed information (user groups distinguished): 

𝑟"high" user expected =  𝑟௛௜௚௛  ∙  𝑝௛௜௚௛ ∙
𝑛௛௜௚௛ ௧௔௥௚௘௧௘ௗ 

𝑛௛௜௚௛

𝑟"low" user expected =  𝑟௟௢௪  ∙  𝑝௟௢௪ ∙
𝑛௟௢௪ ௧௔௥௚௘௧௘ௗ 

𝑛௟௢௪

(8) 

iFLEX assistant with less detailed information (user groups not distinguished): 

𝑟"high" user expected =  𝑟௙௟௔௧  ∙  𝑝௛௜௚௛ ∙
𝑛௛௜௚௛ ௧௔௥௚௘௧௘ௗ 

𝑛௛௜௚௛

𝑟"low" user expected =  𝑟௙௟௔௧  ∙  𝑝௟௢௪ ∙
𝑛௟௢௪ ௧௔௥௚௘௧௘ௗ 

𝑛௟௢௪

(9) 

The relevant results are shown in the following tables. It can be seen that "big” users would prefer to use the 
iFLEX assistant with detailed information because it allows them to earn approximately double the rewards 
(104% gain). On the other hand, the “small” users would prefer that the iFLEX assistant is not fed with detailed 
information, because they receive 55% less rewards. Indeed, when all users are considered as of the same 
“average” type, “big” users tend to be offered lower incentives while “small” users tend to be offered higher 
incentives. Both these effects should have been reasonably expected.  

Thus, to make a fair comparison, we consider the following variant of our problem, pertaining to a repeated 
series of independent DR events (say one event per day). A variation of this model is considered, which is 
applicable when all users correspond to family households, but: it is possible that on certain days either only 
one member of the family employs the water heater, and this happens with probability 𝑞௟௢௪, or alternatively all 
family members employ the water heater (and thus consumer a higher amount of energy), and this happens 
with probability 𝑞௛௜௚ . It should be noted that we take that the number of small (resp. large) users is 𝑁௟௢௪  (resp. 
𝑁௛௜௚௛) in each slot; thus, the choices of type of different users are not independent. When considered in the 
long run (or with respect to their a priori expected values), all users are characterized by the same value of 
metrics important to users, e.g. expected total incentives earned, expected net benefit attained etc. The new 
user metrics can be simply obtained by averaging (over the two types, with weights 𝑞௟௢௪  and 𝑞௛௜௚௛ = 1 −  𝑞௟௢௪) 
the corresponding metrics per type of the single-shot version of the problem. Comparison is then made with 
the metrics of the case where users are not distinguishable due to the lack of detailed user information by the 
iFLEX assistant. Of course, the metrics of interest to the provider remain the same as in the single-shot version 
of the problem. It should also be noted that it would seem more natural to take that users are independent and 
that each of them decides on his type (either small or big) by tossing a coin with probability 𝑞௟௢௪  and 𝑞௛௜௚௛ =

1 −  𝑞௟௢௪  respectively. However, this simple case of a model is harder to analyze and can be better investigated 
by means of simulations. The reason is that, under this model, the total number of small/big users varies, and 
thus the problem with known types should be solved for all their possible values and then averaged with respect 
to the binomial distribution. 
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Based on the above, we define the following metric as well (applicable with and without detailed  user 
information by the iFLEX assistant), which corresponds to the expected incentives earned per user averaged 
over his alternating participations in the two groups: 

𝑟 user expected  =  𝑟"high" user expected ∙ ቆ
𝑛௛௜௚௛

𝑛௛௜௚௛ + 𝑛௟௢௪
ቇ + 𝑟"low" user expected ∙ ቆ

𝑛௟௢௪

𝑛௛௜௚௛ + 𝑛௟௢௪
ቇ (10) 

The results pertaining to the simultaneous consideration of both user types according to the above metric are 
presented in Table 4 and Table 5, which show how the user incentive gains (due to the use of the iFLEX 
assistant) vary according to the 𝑥௛௜௚௛  / 𝑥௟௢௪   ratio and 𝑁௟௢௪, and according to the 𝑟௠௜௡ି௛௜௚௛ / 𝑟௠௜௡ି௟௢  ratio and 
the parameter “𝑎” respectively. It can be seen that the 𝑟௠௜௡ି௛௜௚௛  / 𝑟௠௜௡ି௟௢  ratio and 𝑁௟௢௪  have the highest 
impact on the user incentive gains when the user groups are known. Moreover, we can observe cases (of 
parameter values) where the averaged metric is positive, thus indicating an overall benefit due to the use of 
the iFLEX assistant with detailed information, as well as cases where this metric is negative, thus indicating 
an overall loss due to the use of the iFLEX assistant with detailed information. The overall average is a 9% 
reduction of the expected user rewards due to the use of the iFLEX assistant. This implies that the negative 
impact to “small” users (who are not over-incentivized anymore) overall prevails to the positive impact of the 
“big” users. Therefore, to avoid this undesirable effect, the provider can aim for a slightly lower flexibility than 
the optimal under the iFLEX assistant and offer higher incentives to the targeted users. We expect that under 
such an approach the provider will still enjoy a considerable benefit by employing the iFLEX assistant while 
keeping all users adequately incited by sharing this benefit more generously with the users. It should be noted 
though that since for most of the cases the incentives exceed 𝑟௠௜௡ି௛௜௚௛, targeted users do have a positive net 
benefit under the use of the iFLEX assistant, both with detailed information, by means of which user groups 
can be distinguished, and with less detailed information, by means of which user groups cannot be 
distinguished.  

3.1.3.3 Problem 3: Flexibility reselling in the market 

Next, we investigate the case where the flexibility attained is resold in the market; then, the provider earns 
some revenue and achieves an economic profit 𝑃. This profit equals the revenue from this resale minus the 
expected total incentives paid. The latter term (according to the preceding analysis) is almost equal to the 
incentives budget if this is given or is obtained as a result of solving the dual optimization problem of optimal 
targeting. In the case of dual optimization, both the revenue and the incentives budget depend on the targeted 
amount 𝑋ா of the expected total flexibility. Therefore, if the provider has the opportunity to select this value 

Table 4: User incentive gains for various parameter values “freeze” 

𝐱𝐡𝐢𝐠𝐡 /𝐱𝐥𝐨𝐰 

𝐫𝐚𝐭𝐢𝐨 
𝑵𝒍𝒐𝒘 

Incentive gain in % 
for “big” users 

Incentive gain in % 
for “small” users 

Incentive gain in % for 
the users combined 

3 200 18.6 -72.8 -2.7 
6 200 18.3 -82.6 -4.9 
3 400 45.4 -69.6 -6.4 
6 400 54.9 -81.8 -6.7 
3 600 113.4 -75.3 -10.5 
6 600 130.4 -86.3 -10.5 
3 800 370.0 -77.8 -13.3 
6 800 388.4 -88.0 -12.8 

 
Table 5: User incentive gains for various parameter values “freeze” 

𝐫𝐦𝐢𝐧,𝐡𝐢𝐠𝐡/𝐫𝐦𝐢𝐧,𝐥𝐨𝐰 
ratio 

a 
Incentive gain in % 

for “big” users 
Incentive gain in % 
for “small” users 

Incentive gain in % for 
the users combined 

<2 <1 133.0 -66.9 -5.2 
>2 <1 85.4 -52.5 -14.3 
<2 >1 133.5 -63.6 -4.6 
>2 >1 89.5 -46.4 -11.3 
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within a certain range, he should determine (by means of an “outer” optimization loop) the amount 𝑋ா
∗  of 

flexibility that leads to optimal expected profits.  If pricing of flexibility is linear, i.e., each flexibility unit is resold 
at a price 𝑞, then the relevant optimization problem is as follows:  

max 𝑞 ෍ [𝑦௡ ∙  𝑥௡  ∙  𝑝௡(𝑟௡)] − ෍ [𝑦௡ ∙  𝑟௡  ∙  𝑝௡(𝑟௡)]
௡௡

s. t.   ෍ 𝑦௡ ∙ 𝑟௡
௡

 ≤  𝐵
(11) 

Initially, the effect of the total 𝑋ா target and the selected B is studied with respect to 𝑃. To investigate the 
problem numerically, we take the following parameter and variable value ranges according to Table 6.  
Similarly to the previous investigations, we sweep the parameter space and optimize for 𝑃 in every set of 
parameter values. At first, the expected total flexibility 𝑋ா is considered as the optimization objective. This 
consideration allows for a useful investigation of the relationships among 𝑋ா, 𝐵 and 𝑃. The results are 
presented in the following figures. 

The first set of results (depicted in Figure 5) show how 𝑃 relates to 𝐵 for various values of 𝑟௠௜௡ . It can be seen 
that the profit curve comprises three segments:  

1) A linear segment, for small values of 𝐵. In this region, 𝑃 increases almost linearly with the increase in 
the number of targeted users. Every single new user entering the DR event is a new source of profit 
and the profit equals practically the product of the profit from each user with the number of the 
participants. 

2) A saturated segment, where the profit margin begins to shrink until it reaches its peak value. In this 
area, the maximum number of users is targeted, and incentives are increased across all users to 
increase their participation probability. 

3) A decreasing segment, where regardless of the increase in the incentives, the probability of the users 
participating is already very close to 1, and thus any further increase in the budget does not provide 
any gain. It can also be seen in Figure 5a that the 𝑟௠௜௡ value strongly affects the slope of the linear 
part and the maximum profit, but not significantly the profit in the highly saturated area (decreasing 
part). 

A useful insight from Figure 5a is also the dependency of the profit to the minimum acceptable incentives. The 
𝑟௠௜௡  value strongly affects the slope of the linear part and the maximum profit but not significantly the profit in 
the highly saturated area (decreasing part). 

Figure 5b shows how 𝑃 relates to 𝑋ா for various values of 𝑟௠௜௡. The optimal profit is maximized for a flexibility 
value that is smaller than the maximum that can be attained. The same segments as in Figure 5a can also be 
identified in this case; namely, a linear, a saturated and a decreasing part, which apply now for the same 
reasons as before. It should be noted that the optimal profit, as seen in Figure 5b, is maximized for a flexibility 
value that is smaller than the maximum that can be attained. Indeed, the max. 𝑋ா is accompanied by the 
saturation of the participation probability 𝑝, which is achieved by offering high incentives, thus leading to low 
profits. The value of 𝑟௠௜௡  has a significant impact on the value of 𝑃.  

In Figure 6, we turn our attention to the Net Benefit (N.B.) of the user and examine how this relates to 𝑃 and 
𝑋ா for various values of 𝑟௠௜௡. In Figure 6a, three regions can be distinguished:  

1) A constant N.B. region, where its value almost coincides with the x-axis and remains constant, while 
𝑃 increases. The targeted number of users here is less than maximum. The N.B. is the same for all 
the selected users and does not depend on their number.  

Table 6: Parameter/variable space boundaries with the respective step 

 𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 Upper bound Step 

Parameter 

q 10 - 
x 1 - 
a 1 - 
B 100 10,000 100 

rmin 1 5 0.1 

Variable 
n 1 1000 1 
r 1 10 0.01 
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2) A region of mutual profit (for the DR aggregator and the user), where the increase in 𝑃 also leads to 
an increase in user N.B. This is the case where incentives improve across all users, after they have 
been all targeted. The provider gains in 𝑃 due to the higher probability of DR participation, and users 
benefit as well.  

3) The almost-maximum flexibility region, where 𝑃 decreases, N.B. continues to grow indefinitely and 𝑋ா 
is asymptotically maximized.  

It is interesting to notice that the maximum profit for the provider can be accomplished with a significant benefit 
for the user, so that both sides are satisfied. It is also important that the provider has the option to decrease 
his profit in order to make the users happier while still providing the electrical system with a rich level of 
flexibility.  

The current investigation does not quantify the benefit of the electrical transmission and the distribution 
systems. In general terms, increasing the flexibility from the demand side can only have a positive influence 
to both of these systems, since it will enable the interruption of non-RES (Renewable Energy Sources) 
production units for longer time periods and enable the inclusion of more RES units in the grid. At the same 
time, the existing RES units could operate at their maximum capacities if it is known that the demand is flexible 
and the power will be consumed, thus achieving a higher penetration in the system. This translates to monetary 
savings that could be compensated in the future by the market operator and provide another source of revenue 
for the provider (DR aggregator), so that he may choose to further incentivize the users. In other words, the 
loss of profit of the provider towards maximizing the demand response success could be compensated in a 
different manner from the energy market mechanisms. 

Next, we investigate the effect of the reselling price 𝑞 per flexibility unit to the required 𝐵 and 𝑃. The 
corresponding results are depicted in Figure 6b. We take that the value of 𝑞 varies from number 0.5 to number 
10 with a step of 0.5, while 𝑟௠௜௡ is fixed and equal to 3. We can observe that the profit of the provider is 
increasing in the reselling price 𝑞. This is expected since 𝑃 = 𝑞 ∙ 𝑋ா − 𝐵, for a given 𝐵. To achieve the maximum 
𝑃 for a specific value of 𝑞, the budget 𝐵 should be adjusted accordingly. In general terms, as the resale price 
increases, the budget should also increase, in order to attain a higher profit.  

 
(a) 

 
(b) 

Figure 5: Profit of the provider P with respect to (a) B (b) 𝑋ா, for various values of the minimum acceptable 
incentives 𝑟௠௜௡ of the users. 

 

 
(a) 

 
(b) 

Figure 6: (a) User Net Benefit (N.B.) plotted against the profit of the provider P for various values of the minimum 
acceptable incentives rmin of the users, (b) Sensitivity analysis of the profit of the provider P with respect to B for 

various values of the resale price q.  
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Moreover, there is a region for certain ranges of B and q where the profit is negative, i.e., it corresponds to 
monetary loss for the provider. In such a case, the DR program is not beneficial for the provider and cannot 
even be sustained.  

Interestingly, we can observe in Figure 8a that the profit depends both on the flexibility target X and the resale 
price q. If we draw a horizontal line from a certain value of P>0, we notice that this profit P can be attained for 
certain top values of q, and as X increases, this profit P is achievable until the value of q reaches a minimum, 
and then it can be achieved again for the same higher values of q. That is, for each specific resale price q 
within a certain range, the same profit P is attained for two different values of X. This applies due to the 
asymptotic behavior of the participation probability p towards the value of 1: when all users have been targeted, 
it becomes more difficult to engage their full potential of flexibility because the incentives have to be increased 
up to the point where the probability p becomes nearly equal to 1. The next figure (Figure 8b) shows that the 
user can have the same net benefit for different values of the profit P and the resale probability q. If the energy 
market resale policy is negotiable (rather than being predefined), then the aforementioned observation 
illustrates the potential for the provider to select his resale policy and profit without affecting the user benefit. 
Also, in such a case, if a provider targets a specific profit, then he can also increase the user net benefit by 
achieving an increased the resale price. Finally, if the provider decides to resort to higher q values, there will 
be exactly two different values of q for which the same profit P is attained: one with a low and one with a high 
user net benefit value; this can be seen by drawing a vertical line from the point of the horizontal axis 
corresponding to this value P of the profit. The higher value of N.B. corresponds to a smaller value of flexibility 
than the lower one. 

Directions for extensions: 

 The parameters xn, an and rmin(n) of individual users (or collectively of user types) may depend on contexts, 
such as month, day of the week, vacation periods etc. In such cases, the relevant optimization problems 
should be considered separately, one per context.  

 We have assumed complete information possessed by the provider, particularly when employing the 
iFLEX assistant. In fact, it is important to couple the aforementioned optimization problems with 
approaches for learning of the information employed (mainly of an and rmin(n)), on the basis of each user’s 
feedback, namely acceptance and rejection decisions regarding DR incentives offered. 

 We have only formulated single-shot problems, involving one DR event each, or multi-slot problems with 
independent DR events. Thus, multi-slot problems with DR events that are dependent should be 
considered. In particular, the main “source” of such dependence is to allow for targeted users to shift their 
bath to the next slot, rather than fully postpone it. Stochastic optimization techniques may prove useful in 
this case. 

 We have only considered economic incentives. As explained in detail as well, behavioral traits can also be 
very influential in user’s incentivization, and thus should also be incorporated in our models. Some 
preliminary ideas towards this direction have as follows: If a particular user is known to be altruistic or 
environmentally conscious, then his value of rmin(n) should be discounted by a factor lower than 1. Also, if 
users are influenced and incentivized positively by the participation of a larger number of other users in 
DR (i.e., peer pressure), then the number of targeted users ∑ 𝑦௡௡  (or a function thereof) should be included 
in the formulae in such a way that, if it is large, then lower values of incentives are sufficient.  

 
(a) 

 
(b) 

Figure 7: Sensitivity analysis of (a) the profit of the provider P with respect to the expected total flexibility X and (b) 
the user net benefit (N.B.) with respect to the profit P, for various values of the resale price q. 
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3.1.3.4 Summary and lessons learned 

A simple DR model was proposed for the case of the iFLEX Greek pilot, taking also into account the 
provision of incentives from the provider to the user. In this case, the possibility of user participation is modeled 
by a formula that depends on two parameters. The first reflects the responsiveness of the user to the incentives 
provided, and the second constitutes the minimum incentives that must be provided to the user so that he will 
be more likely to participate than to avoid taking part in DR. On the provider side, the model considers his 
ability to define flexibility values to be requested by each user and the relevant incentives. Three investigations 
were carried out on the problem based on different assumptions. 

In the first investigation users are taken as symmetric. In other words, they are considered to have the 
same probability of taking part in DR because they have the same parameter values and are offered the same 
incentives. Optimization takes place for the maximization of the total flexibility to be obtained with regards to a 
parameter space sweep (keeping a constant budget) and useful insights are collected: 

 When the users are characterized by low responsiveness and low minimum incentives, the optimal 
number of users to be selected for targeting is large. When each of these two parameters increases, 
the respective number decreases. 

 It is for the benefit of the provider to select users that are more responsive, because the offered DR 
incentives will be smaller. Also, users that have a low minimum incentives value require minimal 
incentives. 

 The number of users to be selected, the incentives to be provided and the total flexibility to be obtained 
depend considerably more on the users’ minimum incentives, than on their responsiveness.  

 The total flexibility earned will be maximized when selecting more responsive users that are also 
characterized by low minimum incentives. 

 When employing a budget constraint that includes the probability of user participation in DR, higher 
values of total flexibility are achieved on a wider span of probability function parameters, compared to 
a formulation comprising the “strict” budget constraint that applies even when all targeted users do 
participate in DR.  

 However, the inclusion of the participation probability enables the discovery of optimal incentives that 
are less than the minimum acceptable ones for most of the previous cases. In other words, this 
constraint leads to the counterintuitive and “risky” policy to offering low incentives to many users. This 
may also lead to significant budget overshoots in case more users than those expected actually 
participate in DR. 

 The formulation with the aforementioned “strict” budget constraint leads to optimal incentives that are 
higher than the minimum acceptable ones for the majority of the cases of parameters considered, and 
thus to a “robust” incentive’s policy, which is considered as more realistic, even though it falls behind 
on the forecasted total flexibility  

Therefore, the main lesson from this investigation is that the “strict” constraint on the total DR 
incentives budget (rather than that on the expected total incentives to be paid) should be considered in 
practical cases. Moreover, it is for the benefit of the provider to locate and engage the highly responsive users, 
since the DR program shall not only be cheaper but will also be more successful in terms of flexibility. 

In the second investigation, the population of consumers consists of users with low capability of flexibility 
provision and low minimum incentives (referred to as «low» users) and users with high respective values 
(referred to as «high» users). The distinction can be made feasible thanks to the iFLEX assistant. The 
advantage of this knowledge is investigated here, compared to the previous simple case. In other words, it is 
explored whether possession and exchange of such information through the iFLEX assistant provides benefits 
for the provider and/or the users. 

 Results show that the groups’ distinction provides an average flexibility improvement for the provider 
of 43% when sweeping the complete parameter map. The gains range between 10% and 140%.  

 When the ratio of the minimum incentives of the «high» users to those of the «low» users is high, 
knowledge of user groups becomes significantly more advantageous for the provider. This ratio also 
has the highest impact on the user incentive gains. 

 It is also to the greater advantage of the provider when the group of «high» users is considerably 
smaller than group of «low» users. 

 Group distinguishing is not always to the user benefit. «High» users would prefer the iFLEX assistant 
to be in position to classify them, since they earn on average double the rewards. On the other hand, 
«low» users would receive approximately half of the rewards compared to the case where all users 
are considered as belonging to the same “average” type. 
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 In a horizontal averaging over the entire space of parameters, the user rewards are characterized by 
a reduction of 9%. However, there is a broad range of parameter values where this average is positive. 

Therefore, the main lesson from this investigation is that, in order to avoid this undesirable effect, the 
provider should aim for a slightly lower flexibility than the optimal under the iFLEX assistant and offer 
higher incentives to the targeted users. We expect that under such an approach the provider will still enjoy 
a considerable benefit by employing the iFLEX assistant while keeping all users adequately incited by 
sharing this benefit more generously with them. This is also in line with the increased priority and 
preference that users appear to have recently for economic incentives, in light of the increased energy bills. 
Moreover, we can see that adequate knowledge of the user groups, transfers part of the profit from the users 
(particularly from those whose incentives were considerably overestimated due to lack of information) to the 
provider without necessarily affecting the flexibility target. Although not modeled specifically, we can also 
imagine a case where the aggregator represents a cooperative of users. In this case, the optimal benefit for 
the aggregator will be shared among the users even more favorably for them.  

In the third investigation, we assume that the flexibility attained from a population of uniform users is resold in 
the market. The provider then achieves a profit by earning revenue from the flexibility. The most important 
findings are the following: 

 The profit of the provider increases in an almost linear pattern as the number of targeted users rises 
until the point where everyone is targeted. After this point, to further increase the profit, the incentives 
must be increased for all the users. This gradually creates a saturation, and the profit receives a peak 
value. After this, the profit decreases again.  

 The user’s net benefit remains constant as the number of targeted users increases. When everyone 
is targeted and the provider further increases the incentives, the user’s net benefit increases, while 
the provider profit rises as well. After the profit peak, the net benefit continues to increase, and the 
total flexibility saturates in this region. 

 As a result, the maximum provider profit can be accomplished with a significant benefit for the user, 
so that both sides are satisfied. In this case, the electrical system also benefits because, in general 
terms, the greater the flexibility, the bigger the RES penetration.  

 When the minimum incentives that the users are willing to accept have a small value, the profit for the 
provider rises faster as more users are targeted and vice versa. The peak value of the profit is also 
affected by the minimum incentives. 

 The profit is maximized for a flexibility value that is smaller than the maximum that can be attained and 
depends both on the flexibility target and the flexibility unit resale price. 

 Regarding the relationship between the provider profit and the unit resale price, the former is 
increasing in the latter. 

 The budget may be adjusted to maximize the profit for a specific unit resale price. In other words, as 
the resale price increases, so must the budget to increase the profit. However, for certain budget and 
resale price values the profit turns negative.  

 Interestingly, the provider can select his resale policy and profit without affecting the user benefit. 

Therefore, one of the main lessons learned from this investigation is that with careful selection of parameters, 
i.e. incentives budget and flexibility unit resale price (if negotiable) can lead to “all-win” situations, i.e. beneficial 
for all players involved in the corresponding value chain. Moreover, reselling (by the provider) of the flexibility 
in the market gives rise to a different value chain that offers new opportunities and indirectly associates the 
grid benefit to stronger user and provider incentives. 

According to the previous summary, the following guidelines for the estimation of DR incentives for the Greek 
pilot can be deduced: 

 The incentives provided to users should be at least equal to the minimum each of the user groups 
requires. 

 On a next step, the provider should employ clustering techniques to split the user base in groups of 
similar characteristics. This will magnify his revenue and subsequently profit without increasing his 
budget. The more diverse the user groups are, the stronger the advantage of discriminating them. 

 Further incentivization of the users after engaging all of them may provide more flexibility, but the 
trade-off with the budget should be considered carefully in this case. 

 If the flexibility is resold in the market, then the provider must seek for his profit maximization; this will 
also provide the maximum profit to the users. 

 The price of the flexibility unit should ideally be as high as possible regardless any other parameters. 
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 In all cases, optimization and sensitivity analysis are suggested to find the optimal trade-offs, also 
considering the uncertainty of the user parameters if possible.  

The above guidelines apply to the estimation of economic DR incentives. However, these can be 
complemented by non-monetary incentives, in a way that works favorably for both the users and the 
provider. To this end, the following guidelines apply:  

 The provider should try to engage users that can be compensated (at least partly) by means of non-
monetary incentives. He should determine the age groups, social status e.t.c. of such users and begin 
DR targeting from them.  

As a rule of thumb, targeting of as many users of the previous type as possible is advised.  

 

3.1.4 Practical Issues 

3.1.4.1 Confidence intervals 

An important aspect of the optimization problem is defining the confidence that the targeted 𝑋ா will indeed be 
obtained. In the case of identical users, the total number of users participating successfully in DR follows the 
binomial distribution. Calculation of bounds in the possibility that a random binomial variable deviates by a 
percentage from its mean value can be calculated by the probability mass functions of the binomial distribution, 
which is an accurate, although computationally intensive way.  

In our study of the incentives for the Greek pilot of iFLEX, the stochastic nature of the human decision is 
modelled means of the Bernoulli trial approach. Therefore, in case of identical users, the total number of users 
participating successfully in DR follows the binomial distribution. Calculation of bounds in the possibility that a 
random binomial variable deviates by a percentage 𝛿 from its mean value can be accomplished by means of 
the Chernoff bound, from either one of the equations below:  
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where 𝜇 is the expected value of the binomial random variable (in our case the number of targeted users 
multiplied by the common probability of successful participation), and 𝛿 is the deviation bound from the 
expected value. It should be noted that the equation (12) provides a tighter bound, while equation (13) a 
computationally simpler one: 
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Assuming an example where μ = 500 and a deviation 𝛿 = 10%, the result of (12) shall be 7.5% and the result 
of (13) 8.2%. Another means of calculating the respective probability is by utilizing the normal approximation 
of the binomial distribution. In this above example, this shall result in a probability of 0.087%. Comparison of 
the two methods shows that the Chernoff bound is rather conservative. On the other hand, the normal 
approximation does not necessarily offer a bound to the deviation probability in consideration. Therefore, in 
the calculations to follow, we resort to direct computation of the probability mass functions of the binomial 
distribution, which is accurate, although computationally intensive.  

We shall run an optimization problem to track the optimal number 𝑛 of targeted users and the incentives 𝑟 to 
be offered to each one of them under the criterion of minimizing the total incentives offered. At the same time, 
the respective bounds from the binomial distribution will be calculated. We assume a homogeneous population 
where all users are characterized by the same 𝑎 and 𝑟௠௜௡ parameters. We take that the aggregator budget is 
not constrained and that the minimum total flexibility to be attained is 500. The values and/or limits of the 
respective problem parameters and variables are shown in Table 7. 

In this optimization investigation the possibilities of 𝑋ா deviation from two types of boundaries is also calculated 
and presented. It can be seen in Figure 8a that the possibility of the actual value being less than the nominal 
is significant and is between 44% and 49%. As we begin lowering the minimum bounds that we are willing to 



 D5.3. iFLEX consumer engagement and incentive mechanisms 
 

 

Document version: 1.0 Page 20 of 51 Submission date: 2022-09-30 

accept then the possibility steeply drops, e.g., if we are willing to accept a 0.95 ∙ 500 = 475 value then the 
likelihood of a lower value than that is below 6%.  

Now, let’s suppose that we desire a low probability of the flexibility dropping below the nominal value, e.g. 5%. 
We can run the optimization again for a greater flexibility target that is selected, for example as 500/0.95 =
526.3. We could see how the new incentives’ offers and the rest of the quantities differ with respect to the 
previous optimization. We can see in Figure 9a that 𝐵 is not significantly affected, except for the cases of highly 
unresponsive users (low 𝑎). Most importantly, we see in Figure 9b that the likelihood of 𝑋ா dropping below 500 
is always lower than 5%. If flexibility to be obtained is found to be unacceptable then the target could be 
adjusted upwards in order to achieve the desirable confidence, according to, e.g., the penalty. 

A general conclusion of this investigation is that if there is a hard constraint on the actual flexibility to be 
obtained, in case e.g. there is a flexibility boundary violation penalty imposed from the market, then the 
probability of deviation should be calculated during optimization. If this value is found to be unacceptable then 
the simplest solution would be to adjust the target upwards in order to achieve the desirable confidence, 
according to e.g. the penalty. Alternatively, the acceptable probability of deviation can be part of the 
optimization problem as well, in order to keep only the solutions that are safe. A formulation for this would be:  

ቊ
min 𝑦ଵ ∙ 𝑟ଵ ∙ 𝑝ଵ(𝑟ଵ) +  𝑦ଶ ∙ 𝑟ଶ ∙ 𝑝ଶ(𝑟ଶ) + ⋯ + 𝑦ே ∙ 𝑟ே ∙ 𝑝ே(𝑟ே)

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  𝛴௡ 𝑦௡ ∙ 𝑥௡ ∙ 𝑝௡(𝑟௡) ≥ 𝑋 𝑎𝑛𝑑 𝑃 ቀ 𝛴௡ 𝑦௡ ∙ 𝑥௡ < 𝑋ቁ < δ
 (15) 

 

(a) (b) 
Figure 8: (a) Possibility that the actual flexibility value obtained is below its nominal value according to the binomial 

distribution with respect to the 𝑟௠௜௡ and 𝑎 parameters. (b) Similarly, with the 95% of the nominal value.  

 

(a) (b) 
Figure 9: Differentiation of various quantities when optimizing with a 𝑋ா target of 500/0.95=526.3 instead of 500. (a) 
Difference of total budget expenditure in % and (b) probability that 𝑋ா < 500 with respect to 𝑟௠௜௡ and 𝑎 parameters.  

Table 7: Parameter/variable space boundaries with the respective step 

 𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 Upper bound Step 

x 1 - 
X 500 - - 
B - - - 
N 1 1000 1 

rmin 0.5 5 0.1 
a 0.01 1 0.01 
n 1 1000 1 
r 1 10 0.1 
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where δ is the desired threshold of the probability that the total flexibility actually attained has value lower than 
its target. In fact, for low values of δ, the constraint on the probability will be the binding one, thus rendering 
that on the expected total flexibility redundant. Also, in certain cases, it may be meaningful that the direction 
of the inequalities in the constraints is the opposite, e.g., if there is a hard constraint on the maximum flexibility 
due to e.g. network constraints because of congestion. 

3.1.4.2 Learning of DR parameters 

In this section, we introduce and evaluate an algorithm to identify the user DR parameters of each user without 
previous knowledge whatsoever. With those parameters captured, the 𝑝 of each user will be fully known, the 
real user will thus be modelled, and the optimization algorithms of the provider will be in position to provide the 
optimal targeting.  

The basic concept of the algorithm can be outlined as follows. Initially, the provider begins offering DR 
incentives randomly. This approach can be employed for all users at the beginning of the DR program, and 
also upon entry of every new customer in the program. While incentives are offered, the participation or not of 
the user in each DR session is observed and recorded (as a binary variable), along with the value of the 
respective incentives. For each incentives’ value, the ratio of the number of times that the user participated to 
the number of times the user was targeted, constitutes the participation rate. The participation rates for each 
value of incentives make up the user participation rate pattern. If the user parameters were known, a similar 
pattern could be calculated with the probability function and this would be equal to the user participation rate 
pattern, at least theoretically for infinite DR attempts. We will show, however, that only a relatively small number 
of attempts suffices for the two patterns to be almost equal. Continuing with the description of the algorithm, 
in every DR attempt, the user participation rate pattern is calculated. The respective patterns for all the possible 
𝑎 and 𝑟௠௜௡ values have been also calculated and the two are continuously compared. The pair of parameter 
values that constitutes the best match for the two is the solution. 

The respective mathematical representation follows. To simplify the formulation, the expressions below refer 
to a single user 𝑛. The participation rate pattern 𝑠 for the value 𝑟 of DR incentives can be defined as: 

𝑠௥ =
𝑞௥,௞(௥)

𝑘(𝑟)
 (16) 

where 𝑞௥,௞(௥) is the number of times the user participated in DR and 𝑘(𝑟) the number of times the user was 
targeted with DR incentives equal to 𝑟. Since 𝑞௥,௞(௥)  ≤  𝑘(𝑟)  there follows  0 ≤ 𝑠௥ ≤ 1. This rate is different for 
each incentives’ value 𝑟. This pattern is updated after each DR session. The respective pattern, when 
calculated by the user model is provided by (1). Thus, the goal of the algorithm is then to specify the optimal 
values for parameters 𝑎 and 𝑟௠௜௡that minimize the Root Mean Square Error (RMSE) between 𝑠 and 𝑝: 
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To illustrate the method attractiveness, we employ the algorithm to identify 3 random users, A, B and C with 𝑎 
0.1, 0.5 and 1 and 𝑟௠௜௡ 50, 80, 20 respectively. Parameter values have been selected in a such way that 
different shapes of the probability function are acquired. Figure 10 illustrates the shapes of the probability 
function for the three random users A, B and C.  

Regarding the incentives, we have assumed two schemes:  

1) random offers (open loop procedure) 

2) predictive method (closed loop procedure) 

In the open loop scheme the incentives are provided randomly. In the closed loop scheme, the current 
estimation of 𝑟௠௜௡ and 𝑎 values in each iteration are employed to predict more relevant incentive values for the 
next DR event. More specifically, for the current 𝑟௠௜௡ and 𝑎 values, the incentive values corresponding to 
probabilities 10% and 90% are calculated. The next offered incentive will be a random number, uniformly 
chosen between these two values. 



 D5.3. iFLEX consumer engagement and incentive mechanisms 
 

 

Document version: 1.0 Page 22 of 51 Submission date: 2022-09-30 

The procedure is repeated 10 times, the results are averaged and illustrated in Figure 11. Blue colour 
corresponds to random offering and red colour to the predictive method. The following conclusions can be 
extracted:  

1) It can be seen that only a relatively small number of attempts (i.e., between 5-20 and sometimes even 
smaller) suffice to approach the 𝑟௠௜௡ parameter with remarkable accuracy. 

2) Prediction of responsiveness 𝑎 is more challenging. However, precise identification of the value of this 
parameter is of considerably lower importance than the identification of 𝑟௠௜௡.  

3) The random offers’ method is efficient towards capturing 𝑟௠௜௡, but is rather poor regarding 𝛼.  
4) The predictive method improves even further the speed of convergence of 𝑟௠௜௡ and enhances 

drastically the speed of identifying parameter a.  

 
Figure 10: Probability function shape illustration for the random users A, B and C 
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Figure 11: Parameter identification efficiency test for the 3 random users (user A: a, b, c – user B: d, e, f – user C: g, 
h, i). The first column (a, d, g) illustrates the rmin convergence, the second column (b, e, h) the a convergence and the 
third column (c, f, i) shows the values of the r offerings. Blue color corresponds to the random method and red color to 
the predictive one.  



 D5.3. iFLEX consumer engagement and incentive mechanisms 
 

 

Document version: 1.0 Page 23 of 51 Submission date: 2022-09-30 

It should be recalled that the only feedback available from DR sessions is whether the user participated or not 
in each event. This is a poor case of feedback and this renders parameter identification a difficult task. 
Considering this adversity in conjunction with the above satisfactory test results, we conclude that the learning 
algorithm can be considered as rather efficient; this applies particularly to the closed-loop method. 

The convergence speed of the predictive method is increased, especially in the case of greater 𝑎 values, 
because the algorithm avoids offering incentive values that lie in the saturated areas of the function, where no 
useful information is extracted for the shape of the function. The closed loop method offers incentives only 
within this region, thus accelerating the identification of the probability function shape. 

3.1.5 Conclusion 

We defined an optimization framework that considers uncertainty in the user responsiveness in DR for flexibility 
management subject to budget constraints for incentives. We numerically analyzed the influential factors for 
flexibility management under such uncertainty and we proposed a practical, yet effective, learning algorithm 
to identify the minimum acceptable incentives and the DR responsiveness of users in real deployments. Our 
main findings are as follows: The aggregator should locate and engage the highly responsive users, since the 
DR program will be more successful in terms of flexibility and budget expenditure. When users are 
heterogeneous, the aggregator should classify users in groups of similar characteristics for maximizing his 
revenue profit without increasing his budget. The more diverse the user groups are, the stronger the advantage 
of discriminating them. The “strict” constraint on the total budget for DR incentives should be considered in 
practical cases, as opposed to the “loose” one, because it leads to a robust incentive policy with acceptable 
rewards for the users, despite the somewhat lower total flexibility attainable. When the flexibility is resold in 
the market, the maximum provider profit can be accomplished with a significant benefit for the user, so that 
both sides are satisfied. As a future work, we intend to validate our findings and the proposed learning 
approach for flexibility management with real users. 
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3.2 Practical issues for applying incentives 

3.2.1 Greek Pilot Setup and User Engagement 

HERON primarily focused its recruitment effort on HERON and GEK TERNA (owner company) employees, 
gradually expanding to friends and family. The standard equipment consists of Shelly 1 phase or 3 phase 
smart meter, depending on the participant’s installation and a Schneider relay to remotely control water boilers 
for users that have them in their households. However, user screening has shown that the numbers of users 
with water boilers is in the range of 10-15, with even less willing to allow the platform to remotely access it. To 
compensate that, it was decided to install smart plugs (Shelly Plug and Plug S) in order to monitor loads of 
specific appliances which could be integrated in iFlex assistant. 

Recruitment is an ongoing process to highlight three aspects of energy savings and efficiency gains associated 
with participation in HERON’s Smart Energy Platform: i) know where your energy comes from, ii) know how 
much energy heavy appliances consume and iii) know how consumption is distributed within day/ week in 
addition to mentioning that all equipment, installation and maintenance costs would be covered by HERON. 

Following initial feedback from users and collaboration with the organisation’s marketing team, new material 
was produced, explaining in more detail the platform’s features and scenarios in which consumption monitoring 
could lead to actual savings: 

Furthermore, safety benefits where highlighted using user stories such as: “Are you tired of going back home 
to check if the oven is still on?” as a means of approaching users sceptic of smart / AI driven technology.  

An issue that has been constantly raised in recruitment efforts was the “What is there for me” question. In the 
absence of Dynamic Tariffs and DSO issued and maintained Smart Meters, energy monitoring monetary 
benefits to energy consumers are reduced to savings that occur by turning off their appliances. Naturally, it 
has been expected by the users, that load shifting actions which may alter their schedules will have to generate 
direct benefits, either through a dynamic tariff that implicitly incentivises them to consume at off-peak market 
hours, or through an explicit payment as a reward for their actions. However, monetisation of consumption can 
only be based on DSO issued meters, which cannot be tampered by law (RAE Decision on Electricity Theft 
404/2015) (OGGG, 2015). The smart meters installed by HERON are not covered by the aforementioned legal 
provisions due to technical and regulatory reasons; most notably, the liberalisation of the Greek electricity 
sector, which forbids Utilities (Energy Suppliers) undertaking Distributor (DSO) roles, therefore direct measures 

 

 

Figure 12: New material, explaining in more detail the platform’s features and scenarios in which consumption 
monitoring could lead to actual savings 
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cannot be implemented. This issue had to be communicated to potential and existing iFLEX participants, given 
that discussions on promoting RES energy by shifting consumption in hours dominated by RES generation 
have been side-lined by the discussion on monetary gains, and while we expect that user participants will be 
supportive to some extent, their continuous engagement is not guaranteed.  

In this context, we have identified the main properties the incentive mechanism should have in order to keep 
users engaged on a weekly / monthly basis and be compliant with regulatory constraints and company policies. 
Therefore, rewards should in-principle: 

1. Be non-monetary 

2. Reflect energy costs for requested actions i.e. for activated assets that were not scheduled for the day  

3. Be given to multiple winners 

4. Guarantee that all users feel that they are included and that they could win a reward 

5. Reflect effort for users i.e. more active users should have more chances of winning rewards 

The aforementioned properties should reward those who are more aligned with iFA actions while also not 
explicitly penalise more casual users. While a mechanism that could satisfy the properties is outlined in Section 
3.3, specifics such as the period it will cover, price value, number of winners are yet to be clarified, while initial 
discussions within the consortium have identified the need to bridge the effectiveness of the incentive 
instrument with business actions. For example, literature suggests that a single winner over a longer period 
brings stronger incentives than multiple winners during shorter periods, that is although in expectation the prize 
is the same, risk seeking users would be more engaged if the prize is higher. 

Finally, a weekly report is currently under design, showing basic consumption characteristics such as 
consumption broken down by day and the carbon footprint of consumption on hourly basis. This report will be 
further enhanced with iFA specific data, providing the accumulated scores, monetary rewards (if any) etc. In 
addition, as a means of boosting engagement, it will be shown that increasing actions by even a small 
percentage can significantly increase the score, therefore increase the probability of winning the lottery. 
Likewise, it will be shown that following more iFA actions could have potentially reduced the user’s carbon 
footprint. 

3.2.2  Personal, social and moral incentives 

Personal, social and moral incentives are deployed in the recruitment and engagement activities (information 
material, interface design and performance reports) of pilot participants. 

In terms of personal incentives, which cover both monetary and non-monetary elements, the visualisation of 
consumption, which enables participants to ‘know where your energy comes from’, ‘how much heavy 
appliances consume’ and ‘how consumption is distributed’ generates an awareness and feeling of being in 
control, being smart, and perhaps even an energy frontrunner. The feeling of being in control is further enforced 
with the aspect of feeling safe by the addition of user stories (“Are you tired of going back home to check if the 
oven is on?”) which speak to the common human experience of responsibility. The illustration of how energy 
monitoring can lead to energy savings and the gaining of points to win lotteries help boost the sense of being 
competent and effective. Finally, the sense of feeling important and influential is also invoked since all 
equipment, installation and maintenance costs are offered in exchange of participation. 

In terms of social incentives, participants will be able to see how their actions have helped reduce the carbon 
footprint and receive information regularly on the positive consequences of total participation (acceptance of 
events) on RES integration in their local, regional and/or national context. This knowledge evokes a sense of 
contributing to society and a feeling of doing the right thing. 

Information given to the participants will also touch upon moral incentives (how am I doing and am I doing 
enough) through tracking participation and progress. It will involve visualisation of or information on: 
performance in terms of points and participation rate compared to others; the amount of energy saved/reduced 
for a given period and/or per event and/or as per personal goal set; environmental consequences of 
actions/participation in events and the consequences of their actions/participation in events in relation to grid 
security, grid stability, and RES supply integration. 
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3.2.3 Flexibility measurement and verification 

A concrete Measurement and Verification plan is crucial in order to validate the participation of end users to 
Demand Response (DR) events. Within the context of the Greek pilot, explicit DR – both automated and 
manual – will be considered. 

In explicit DR events, potential participants are requested to shift the consumption of certain flexible assets in 
a specific way. The specifications of the flexible assets – as well as the capacity of the pilots to measure their 
consumption – is crucial for validating the offered flexibility by the users. In iFLEX project, all the flexible assets 
within the residential pilot users’ premises will be equipped with dedicated metering devices, so that the exact 
consumption of these assets can be directly measured. These metering data per asset can be exploited in 
order to validate that the requirements within the context of explicit DR events have been fulfilled. A pre-
requisite for this validation is the knowledge of the type and rated power of the flexible asset, as well as its 
different operating states (i.e. there are more possibilities than just the on/off states). Comparing the requested 
flexibility (for accepted DR events) and the measured state of the device, the users’ conformance to the 
requested action can be elaborated, but also their responsiveness to DR activities.  As regards automated DR, 
boilers,  which shall be controlled via relays and equipped with dedicated sub-meters, will be the targeted 
flexible assets.  On the other hand, based on the most recent information, manual DR will focus mostly on air-
conditioning units. The actual consumption of these units will be measured thanks to dedicated smart plugs. 
Their metering data will be exploited for the verification of users’ conformance to the DR events’ requirements.  

3.2.4 Estimation of total flexibility desired by RES Aggregator and economic implications 

The total flexibility desired by RES Aggregator will be directly used to mitigate uncontrollable RES generation 
imbalances. In other words, the ultimate goal is to minimize the deviations between the actual RES generation 
with respect to the declared generation schedule of the RES portfolio involved in the Day-Ahead Market (i.e. 
DAM schedule). In practical terms, in case that the RES portfolio generates in real-time more (less) than the 
declared DAM schedule (due to inherent forecasting errors), then the end-user DR resources will be called to 
increase (decrease) their consumption in order to collectively mitigate RES generation imbalances. 

For the estimation of the total flexibility desired by the RES Aggregator, every 15-min RES Aggregator foresees 
which is the said total flexibility (positive/negative) that will be needed to be provided by DR Aggregator during 
the next 15-min interval (on the basis of the cleared DAM schedule and relevant very short-term forecasts that 
are continuously made by RES Aggregator during the course of the day), so that RES generation imbalances 
are counterbalanced as much as possible. The exact number and maximum capacity of the RES (PV) plants 
that consist the said RES portfolio shall be indirectly determined by the attained number of end-user 
households that will be actively engaged during the course of the project. This serves the need to obtain 
comparable RES and end-user DR portfolios in terms of aggregated capacity, so that more realistic flexibility 
requests are formulated. 

Regarding the economic implications, in principle RES Aggregator is supposed to participate in a centralized 
wholesale market where the “dual-pricing” option is adopted as regards the imbalance pricing. According to 
this pricing scheme, in case a BRP (e.g. said RES Aggregator) is short (i.e. it produces in real-time less than 
its DAM schedule), for its production deficit it pays to the TSO the marginal price of all accepted upward 
balancing offers (MPu) that have been provided by the BSPs in the balancing market, which is normally higher 
than the respective DAM clearing price (MPu > DAM price). On the contrary, in case a BRP is long (i.e. it 
produces in real-time more than its DAM schedule), for the excess generation it is paid by the TSO the marginal 
price of all accepted downward offers (MPd) that have been provided by the BSPs in the balancing market, 
which is normally lower than the respective DAM clearing price (MPd < DAM price). In this way, the BRP has 
no incentive to over-/under-declare its forecasted generation in the DAM. This, in turn, mitigates the possibility 
that gaming behaviours appear in the day-ahead and balancing market by all participants (BSPs and BRPs). 

In the above context, in general a bilateral contract could be concluded between the RES Aggregator and the 
DR Aggregator for the financial settlement of the bilateral mitigation of the aforementioned RES generation 
imbalances. The detailed terms of this contract can be decided mutually by the involved parties (DR and RES 
Aggregator). A possible contract scheme could be the following: the total flexibility desired by the RES 
Aggregator for every 15-min interval (in MWh) and which must be provided by the DR Aggregator is priced at 
a fixed price (€/MWh), which may be different for positive and negative imbalances. For instance, the fixed 
contract price when DR Aggregator addresses RES portfolio short imbalances (i.e. RES generation in real-
time is less than DAM schedule and, therefore, DR resources are called to decrease their consumption to 
mitigate RES generation imbalances) lies between the DAM clearing price and the MPu. On the contrary, the 
fixed contract price when DR Aggregator addresses RES portfolio long imbalances (i.e. RES generation in 
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real-time is higher than DAM schedule and, therefore, DR resources are called to increase their consumption, 
accordingly) lies between the MPd and the DAM clearing price. Average historical clearing prices could be 
used for the pilot implementation of this bilateral contract scheme. An appropriate penalty scheme could also 
be included in the aforementioned contract scheme in case DR Aggregator does not fulfill its contractual 
obligations towards the RES Aggregator. For instance, this may occur if the RES Aggregator is long in real-
time and the DR Aggregator is not capable of activating (i.e. turning-on) as many end-user DR resources as 
needed (or agreed, according to the terms of the said bilateral contract) to counterbalance RES generation 
imbalances. 

Although the aforementioned contract scheme is the “appropriate” one in practice, for tractability reasons in 
the modelling part above (see section 3.1.3.3), a simpler version was considered, where only positive flexibility 
requests are remunerated and no penalties for non-fulfilment of the associated DR Aggregator obligations are 
imposed.  

 

3.3 Combination of economic and non-economic incentive mechanisms 

Next, we develop the specific mechanism awarding the incentives to the users of the Greek pilot.  

Ideally, user 𝑛, if targeted for a DR event and participating successfully, he should be awarded in money the 
incentives 𝑟௡  initially offered to him when targeted. Recall, that participation of user 𝑛 in a DR event actually 
happens with probability 𝑝௡(𝑟௡) given by equation (1). Therefore, in a longer period (say one month) user 𝑛 
should be awarded the sum of rewards across the set of DR events where he participated successfully; for 
simplicity, we denote this amount as 𝑅௡. This mechanism, namely direct payment of such an amount to the 
user, cannot be implemented due to constraints of the Greek pilot partners. For the same reason, an equal 
discount to the user’s energy bill cannot be granted either.  

The “closest” incentive mechanism is for user 𝑛 to receive a gift, namely, an item of value 𝑅௡. This mechanism 
would involve the same expenditure for the provider. However, if the value of the gift is low, the award of such 
a gift may not be attractive for the user. The same applies, to a certain extent, for the earning of a low monetary 
amount 𝑅௡. According to prospect theory (D5.2, 2021), it is preferable for the user to be offered (as an 
incentive) a prospect of receiving a gift of considerably higher value, by participating in a lottery. Next, we 
discuss and assess a set of such lottery mechanisms.  

First, it should be noted that the rewards offered to users for participating in DR events still apply and are still 
calculated by the same optimization problems already analyzed. However, these rewards now correspond to 
virtual currency (or “points”), which at the end of the period considered are converted to the probability 𝑤௡(𝑅௡) 
for each of the users to win the lottery, given that he is awarded a total amount 𝑅௡ of rewards. (For simplicity, 
we maintain the term “reward”, rather than “virtual reward” or “points”.) Of course, if points are calculated 
somewhat differently (e.g. if additional points are offered in certain cases, as a result of the provider’s policy 
to promote certain actions), then the propositions below still apply.  

A first desirable property of the mechanism at large is that 𝑤௡(𝑅௡) is proportional to 𝑅𝑛, in order for users to be 
incited to participate in DR and collect rewards. This leads us to the first proposition for a mechanism; namely, 
to perform a lottery of a single item of pre-specified value 𝑉, with each user having a probability of winning 
𝑤𝑛(𝑅𝑛) that is proportional to his total reward 𝑅𝑛. Since one of the users should always win the lottery, there 
should hold ∑ 𝑤௝൫𝑅௝൯ = 1௝ , which implies that:  

𝑤௡(𝑅௡) =   
𝑅௡

𝛴௝𝑅௝

 (18) 

Note that the “running” index in the summation spans the set of all users. This essentially corresponds to the 
simple incentives’ mechanism presented in Subsection 3.2.1, which is practically applicable.  

However, this straightforward mechanism has a somewhat surprising disadvantage. If all 𝑁 users are 
symmetric, then they will all have (on the average) the same probability 1/𝑁 of winning the lottery regardless 
the rewards gained, and thus regardless the flexibility offered. In other words, a population of 𝑁 symmetric 
users contributing high flexibility in (say) the first period and low flexibility in the second period will be treated 
the same in both cases by the mechanism. This fact can incite users to contribute with low flexibility, which is 
not the right incentive.  
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The reason for the aforementioned undesirable property is the normalization of the probability of winning 
𝑤𝑛(𝑅𝑛), which introduces an interdependence among the users. Therefore, we can circumvent this problem 

by organizing a personal lottery for each user. In particular, the probability 𝑤𝑛(𝑅𝑛) for user 𝑛 to win his lottery 
should depend on its rewards only, in such a way that the expected value of the payoff earned by the user 
equals his total amount 𝑅𝑛 of rewards. Thus, in a series of periods, the user will be compensated on the 
average as much as in the case of monetary incentives. Therefore, in the first place, it is not necessary to run 
additional experiments to assess this mechanism, and characterize the optimal outcomes, their properties etc. 
Nevertheless, the effect of the user’s prospect for a prize of high value, can be assessed in future experiments; 
it is plausible that it improves the participation probability and thus the expected incentives of the provider for 
a given flexibility target.  Furthermore, if the item put in user’s 𝑛 personal lottery has a particular high value 𝑉, 
then we can meet the desired expected reward by tossing a biased coin (i.e. by performing a Bernoulli trial), 
with “success” probability 𝑤௡(𝑅௡)  =  𝑚𝑖𝑛{ 𝑅௡/𝑉, 1}. If “success” is not the outcome, then the item is not 
awarded to user 𝑛.  

This set of 𝑁 independent personal lotteries is a simple and mathematically sound mechanism that provides 
the right incentives to each of the users, regardless the contribution of others. However, the actual total 
expenditure of the provider can vary considerably. One extreme value of this expenditure arises when no user 
wins in his personal lottery, and thus the total expenditure of the provider is 0; this event applies with probability 
𝜫𝒋 (1 −  𝑤௝(𝑅௝)). However, such a case may not be desirable from a publicity point of view and may also give 
rise to doubts on the credibility of the lotteries’ process. The opposite extreme case arises when all users win 
in their personal lotteries, and thus the total expenditure of the provider is very high (namely 𝑁 ∙ 𝑉), which is 
not desirable from an economic point of view; this event applies with probability 𝜫𝒋 𝑤௝(𝑅௝). Therefore, we do 
not opt for this mechanism either.  

From the above discussion, it is evident that the desired properties of the lottery mechanism at large are as 
follows:  

 only one lottery with all users is performed; 
 each user 𝑛 has an expected payoff equal to his total amount 𝑅𝑛 of rewards; 
 exactly one user wins, so that the provider’s total expenditure is predictable.  

These three objectives can be attained simultaneously only if we run a single lottery with all users, where: 

 each user has a probability of winning 𝑤𝑛(𝑅𝑛) that is proportional to his total reward 𝑅𝑛,  
 all probabilities of winning sum to 1, so that we always have exactly one winner, which implies that for 

each user 𝑛 we have  𝑤௡(𝑅௡) = 𝑅௡ / 𝛴௝𝑅௝ , 
 and the value of the item that constitutes the prize of the lottery is not predetermined (otherwise, as already 

explained we do not offer the right incentives to the users), but 
is equal to the total rewards 𝛴𝑗𝑅𝑗 given by the provider to all users in this period.  

Indeed, the expected payoff of user 𝑛 equals the product of the probabilities of winning of user n times the 
value of the item put in lottery, that is 𝑤𝑛(𝑅𝑛) ∙ (𝛴𝑗𝑅𝑗), which equals 𝑅𝑛. That is, by setting the value of prize of 

the lottery as equal to the total rewards 𝛴𝑗𝑅𝑗, which depends on the user responsiveness to DR, rather than to 
an arbitrary pre-specified value (as in the initially considered lottery) the mechanism provides the right 
incentives to the users. Therefore, again, in the first place, it is not necessary to run additional experiments to 
assess this mechanism, and characterize the optimal outcomes, their properties etc. However, the practical 
implementation of this mechanism entails that the value of the item put in lottery (and thus the item itself) is 
determined after the end of the period considered on the basis of all rewards offered to the users. Thus, for 
this decision to be accountable, all such rewards should be announced, in an anonymized yet auditable way, 
so that each single user can verify that the provider does not undermine the value of the item put in lottery.  

Variations of the basic mechanism:  

 In order for multiple users to benefit from the lottery mechanism, the provider can put in lottery multiple 
(say 2-3) items, with total value equal to 𝛴𝑗𝑅𝑗. This may be preferable for the provider, since users can 
possibly be more eager to participate if they have multiple chances to win. When the same formula is 
employed for the probability 𝑤𝑛(𝑅𝑛) of user 𝑛 winning each particular lottery, the expected payoff of 

user 𝑛 still equals 𝑅𝑛 provided that a user that wins the first lottery is allowed to also participate in the 
second one etc. On the contrary, if each user is allowed to win at most one item, then the expected 
payoff of user 𝑛 is lower than 𝑅𝑛. Indeed, to illustrate this fact, suppose that two items of equal value, 
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namely 
ଵ

ଶ
∙ 𝛴௝𝑅௝, are put in lottery. Then, the expected payoff of user 𝑛 in the first lottery is 𝑤𝑛(𝑅𝑛) ∙

ቂ
1

2
∙ 𝛴𝑗𝑅𝑗ቃ =

ଵ

ଶ
∙ 𝑅௡, while that in the second lottery is 𝑤𝑛(𝑅𝑛) ∙ [1 − 𝑤𝑛(𝑅𝑛)] ∙ ቂ

1

2
∙ 𝛴𝑗𝑅𝑗ቃ =

ଵ

ଶ
∙ 𝑅௡ ∙ [1 −

𝑤𝑛(𝑅𝑛)]. Therefore, the total expected payoff of user 𝑛 now equals 𝑅௡ ∙ [1 −
1

2
∙ 𝑤𝑛(𝑅𝑛)], which is 

somewhat lower than 𝑅𝑛. Despite this property, putting multiple items on lottery has another nice 
property: the provider can resort to a tiered determination of the prizes put in lottery: the provider can 
announce (in the beginning of the period) the value 𝑉଴ of the “basic” item to be put in lottery (at the 
end), and the value 𝑉ଵ of an additional item to be also put in lottery if  𝛴𝑗𝑅𝑗 > 𝑅∗, and the value 𝑉ଶ of 

a third item to be also put in lottery if 𝛴𝑗𝑅𝑗 > 𝑅∗∗, where 𝑅∗∗ >  𝑅∗, etc. That is, the values of the items 
to be possibly put in lottery are pre-specified, and only the exact set of such items is determined at the 
end of the corresponding period.  

 Instead of employing the (virtual) rewards and tickets, the probability 𝑤𝑛(𝑅𝑛) of (each) user 𝑛 winning 
the lottery is set proportional to his total flexibility 𝑋௡ offered in the period of interest, which serves (as 
a proxy for 𝑅𝑛). In this case, the total value of the item(s) put in lottery should be proportional to the 
total flexibility 𝑋 = 𝛴௝𝑋௝ attained by the provider during this period. Although the incentives offered to 
users by this lottery mechanism are only “approximately right”, the mechanism itself can be easier to 
explain to users. In this case, it is necessary to run additional experiments to assess this mechanism, 
and characterize the optimal outcomes, their properties etc., by introducing the probability of winning 
(which depends on the flexibility) in the objective functions etc.  
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4 Incentive mechanisms for the Slovenian pilot 

4.1 Modeling and analysis of economic incentive mechanisms 

4.1.1 The Context 

HEMSs are going to be installed at prosumer/consumer premises. HEMS will provide readings from individual 
devices at residential premises in the future, and readings from sensors for comfort (temperature, humidity), 
heat pumps and boilers. In the case of prosumers, PVs will generate electricity that can be injected into the 
grid or consumed locally, since currently there is no electricity storage capability. The customer pays only for 
the total net power consumption in the billing period. However, no selling of electricity actually occurs. 

In this pilot, flexibility is expected to be provided based on DR signals that are practically high network tariffs 
for specific hours announced one day ahead. These network tariffs could potentially be combined with dynamic 
retail tariffs in the flexibility events. The users are expected to change their electricity-consumption schedules 
in response to these higher tariffs, so as to minimize their electricity bill, and thus offer flexibility. 

In addition, messages are to be sent to users for energy consumption feedback (i.e., energy advice) and 
encouragement for reacting upon these signals. The users practically cannot opt-out. However, the users are 
free to choose their own self-optimizing way to react to DR signals, by adjusting or not their electricity 
consumption schedule accordingly. Hence, while they cannot declare opting-out, they may opt out in practice 
by not responding to DR signals. Slovenian users will be able to choose which activities involving electricity 
consumption to shift in time or cancel. The flexibility offer (negative or positive) can be estimated based on 
current load profiles of the prosumers in this pilot. 

4.1.2 The Model 

We consider a set N of 𝑁 consumers. Each day is divided into 𝑇 time slots, indexed by 𝑡. For each consumer 

𝑛 ∈ N, we denote as 𝒙௡,଴ the daily vector of baseline energy consumption per time slot prior to DR. Moreover, 
we assume that some customers possess solar panels, which generate some amount of electricity. We denote 
as 𝒘௡ = {𝑤௡

௧}, ∀𝑡 ∈ 𝑇  the energy generation vector of the solar panels of prosumer 𝑛. 

4.1.2.1 The DR Aggregator's problem 

We denote as 𝑥௡
ఛ   the flexibility offered by consumer 𝑛 at time slot 𝜏. We assume that each consumer n is 

compensated according to a linear incentives’ policy. That is, he receives by the DR aggregator incentives 𝑟௡ 
per flexibility unit provided thereto. Then, the objective of the DR aggregator is to select the appropriate set of 
consumers and the flexibility 𝑥௡

ఛ  to be asked by each of them, so that the required flexibility 𝑋ఛ is met at a 
specific time slot of interest 𝜏 with the minimum amount of incentives offered. Please note that 𝒙௡,଴ =

{𝑥௡,଴
௧ }, ∀𝑡 ∈ T denotes the baseline daily consumption for consumer 𝑛, while 𝒙௡,ଵ = ൛𝑥௡,ଵ

௧ ൟ, ∀𝑡 ∈ T is the updated 
daily consumption schedule for consumer 𝑛 subject to the flexibility event. Therefore, the DR aggregator’s 
optimization problem is as follows:   

 
(19) 

 
(20) 

 

(21) 
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 (22) 

where 𝑦௡  ∈ {0,1} is the decision variable for targeting user 𝑛. 𝜓௧ is the electricity unit price at time slot 𝑡, while 
𝜑௧ is the feed-in tariff for injecting renewable energy into the network which can be different per time slot 𝑡. 
Recall that no other kind of energy trading is assumed to take place. Note that 𝑥௡෦ఛ is the 𝜏 − 𝑡ℎ component of 
the vector 𝑥௡,଴ − 𝑥௡. Constraint (21) is an incentive compatibility condition, which ensures that each targeted 
user will indeed offer the flexibility requested thereby, because he is better-off in terms of net benefit than by 
not participating in DR. Also, constraint (22) is a feasibility condition for flexibility provision that dictates flexibility 
per user to be upper bounded by the sum of his baseline energy consumption and his solar energy production 
at time slot 𝜏. 

To simplify our problem, we henceforth consider a simpler DR incentives policy. In particular, we assume that 
all users are offered the same incentive 𝑟, per flexibility unit, while all users can offer flexibility (i.e., there is no 
targeting). This amounts to a practically applicable DR incentives policy, with all consumers being eligible and 
the common per unit incentives being publicly announced by the DR aggregator. In this case the formulation 
of the DR aggregator’s optimization problem becomes: 

 
(23) 

 

(24) 

 
(25) 

 

 

(26) 

This optimization problem can be solved by the aggregator w.r.t. 𝑟, 𝑥௡, ∀𝑛 ∈ N when the DR aggregator has 
full information concerning the utility functions. That is, 𝑈௡(∙) is known by the aggregator for each customer 𝑛. 
Otherwise, we have to resort to a distributed and iterative solution, which is described in the distributed 
algorithm section. In that case, the aggregator solves the optimization problem of equation (23) considering 
only the constraints (24) & (25), while the user solves his own optimization problem, which is introduced in the 
user’s problem section. 

4.1.2.2 The User's problem 

We assume that users are offered by the DR aggregator incentives 𝑟 per flexibility unit at time slot τ.  Then 
each user 𝑛 has to select is optimal flexibility vector 𝑥௡, by solving the following problem: 

 

(27) 

For user 𝑛 to participate in DR, two conditions should hold: 
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 Individual Rationality (IR): The net benefit from participating in DR should be positive. 

 Incentive Compatibility (IC): The net benefit from participating in DR should be higher than that when 
not participating, or equivalently the difference of these two net benefit values should be non-negative; this 
amounts to condition (26).  

Since 𝑥௡,଴ > 0 for a user 𝑛, his net benefit when not participating in DR is positive. Thus, IR and IC conditions 
are concurrently met when condition (26) is true.  

Our analysis to follow is applicable to increasing and differentiable user utility function. Nevertheless, in our 
analysis, we employ the following utility 𝑈(∙): 

 
(28) 

where 𝛽௡
௧ = 𝑥௡,଴

௧ /max {𝑥௡}. According to this function, a reduction (resp. increase) in energy consumption in a 
certain slot results in loss (resp. gain) of comfort, and thus of utility, for the user. These utility deviations are 
summed in a weighted fashion over the entire time period 𝑇 considered, with a normalized weight per slot that 
is proportional to the total energy consumption during that slot. 

4.1.2.3 Equilibrium 

The aforementioned problems, in fact, can jointly be seen as of a Stackelberg (leader-follower) game: the DR 
aggregator moves first to select incentives 𝑟 and each user 𝑛 follows by selecting his flexibility 𝑥௡. The overall 
optimization problem (comprising DR aggregator's and user's ones) can be solved by means of backwards 
induction. That is, the user's problem is solved first for each user 𝑛, to find the optimal flexibility 𝑥௡, assuming 
that optimally chosen incentives 𝑟∗, applicable for the entire population of users, have been announced by the 
DR aggregator. Then, the DR aggregator’s problem could be solved, if the dependence of 𝑥௡, ∀𝑛 ∈ N to 𝑟∗, 
were known expressed in closed form. However, this is a very restrictive assumption. Hence, we resort to an 
iterative distributed algorithm for deriving the desired equilibrium point. 

4.1.2.4 Distributed Algorithm 

As already explained, in the case where user utility functions are not known, then the DR aggregator and the 
user should solve their individual problems, i.e., (23) s.t. (24) & (25) for the DR aggregator and (27) for the 
user respectively. For this purpose, we introduce the following iterative distributed approach: The DR 
aggregator and the consumers jointly compute an equilibrium based on a gradient algorithm (Hannah, 2015), 
where (i) the DR aggregator sets the reward per flexibility unit and (ii) each prosumer solves his own 
maximization problem in response. In all cases studied, the iterative process converged to the optimal solution; 
no case of divergence was observed. 

At the beginning of each round 𝑘, the DR aggregator announces the per unit of flexibility incentives 𝑟. Each 
user 𝑛 updates his offered flexibility 𝑥௡′ according to the formula below and announces it to the DR aggregator.  

 
(29) 

𝟏(∙) is an indicator function, which equals 1 if its argument is greater than zero, or 0 otherwise. Then, DR 
aggregator updates the per unit of flexibility incentives 𝑟 according to the formula below. 

 
(30) 

At the end of the round, the DR aggregator sets 𝑟 = 𝑟′ and each customer 𝑛 ∈ N sets 𝑥௡ = 𝑥௡′ . 

4.1.2.5 Multiple Flexibility Slots 

We now consider the case that the aggregator requests flexibility in multiple time slots 𝑆. One may argue that 
this problem can be solved by consecutively solving problem (23) for each of the time slots of interest. 
However, such a solution would only be suboptimal, as the flexibility provided separately per time slot would 
only be “myopic” without being able to find the updated consumption schedules that joint satisfy the flexibility 
objectives. The multi-slot aggregator problem is given by: 
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(31) 

 
(32) 

 

(33) 

4.1.3 Additional incentives 

4.1.3.1 Peer pressure through social comparison 

One behavioral driver for reducing power consumption is peer pressure through social comparison. Peer 
pressure can be exercised for flexibility management simply by privately announcing to the user the relative 
performance percentile to which he falls according to his offered flexibility in a number of previous DR events. 
We can assume that the user enjoys some personal satisfaction ℎ௜ from being ranked first. The higher the 
flexibility offered by the user at the time duration of interest, the higher the probability that this user is ranked 
first. We approximate that probability below. 

First, we remind some material from the theory of order statistics (David, 2011). Let 𝑋ଵ, … , 𝑋ேିଵ be 𝑁 − 1 
independent and identically distributed (i.i.d.) random variables. In our case, the random variable 𝑋௝ denotes 
the energy flexibility of user 𝑗. The order statistics 𝑋(ଵ), 𝑋(ଶ), … , 𝑋(ேିଵ) are also random variables, defined by 
sorting the realizations of 𝑋ଵ, … , 𝑋ேିଵ in non-decreasing order. Namely, for each realization ω, we arrange the 
sample values 𝑋ଵ(𝜔), … , 𝑋ேିଵ(𝜔), in non-decreasing order, 𝑋(ଵ)(𝜔) ≤ 𝑋(ଶ)(𝜔) ≤ ⋯ ≤ 𝑋(ேିଵ)(𝜔), where 
(1), (2), … , (𝑁) denote that permutation of indices 1,2, … , 𝑁 − 1 for which the random variables X are ordered. 
Thus, we have: 

 

(34) 

For a user 𝑛 to be ranked first, it is necessary and sufficient that his flexibility 𝑥 if higher than the maximum 
flexibility of all 𝑁 − 1 other users. For a fixed value of 𝑥, this probability is given by: 

 
(35) 

Where 𝐹௑(∙) is the common cumulative distribution function (CDF) of the variables 𝑋ଵ, … , 𝑋ேିଵ.  This CDF can 
be estimated based on prior flexibility performance of the users. As a simple approximation, this CDF can be 
assumed equal to the of the baseline consumption of the users in the flexibility slot scaled by 𝑋/ ∑ 𝑥௡,଴௡∈\ , 
which is the factor by which the total consumption is discounted due to offering of flexibility. The term 𝐹௑ಿషభ

(𝑥௡෦) ∙

ℎ௡ is the average benefit of a user 𝑛 from being ranked first when exerting flexibility 𝑥௡෦. This term should be 
added to the user problem (27) to express the incentives by the mechanism of peer pressure. 

4.1.3.2 Lotteries 

According to prospect theory (Kahneman, 1979), when presented with alternatives that involve risk and 
uncertainty, people tend to prefer higher gains with small probability than equivalent (on the average) gains 
with certainty. Flexibility rewards cannot always be easily implemented due to significant changes required to 
the billing system and complexity for their inclusion in the accounting records of the utility company or 
aggregator. Alternative to the flexibility rewards, albeit with simpler implementation in practice, could be the 
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organization of weekly/monthly lotteries for flexibility with a certain price of higher value 𝑉. The higher the 
participation of the user to flexibility events and the higher the flexibility offered, the higher the probability to 
win the lottery. This could be achieved in practice by providing a number of lottery tickets to each user that is 
proportional to the flexibility he offers over a certain period. Then, a ticket would be drawn from the lottery to 
determine the winner of the particular period. A new lottery would subsequently be started for the next period. 
The probability for a user to win the lottery is proportional to his individual flexibility over the sum of total 
flexibility provided by all users. However, according to prospect theory, since the probability 𝑝 to win a high-
valued prize is low, the satisfaction of a user from this prize is given by 𝜋(𝑝) ∙ 𝑉 > 𝑝 ∙ 𝑉; this is referred to as 
“hope of large gain”. As compared to the reward per flexibility unit, a lottery can be more motivating for flexibility 
management for the same incentive cost. 

4.1.4 Evaluation 

We employed the REDD dataset (Kolter, 2011). The baseline consumption of the houses is depicted in Figure 
13a. We assume that the requested flexibility is 2KWh at the time slot of 12pm-1pm. We consider that the off-
peak tariff per electricity unit is 0.1 €/KWh, while the peak tariff, employed between 12pm-1pm, becomes 
0.4€/KWh. We assume that the utility function (28) expresses the satisfaction for user 𝑛 from his consumption 
schedule. We assume the parameter 𝜉 = 0.01 in the distributed algorithm of the distributed algorithm section.  

For peak-tariff pricing at the time slot of the desired flexibility without any flexibility rewards (𝑟 =  0), the optimal 
solution to problem (23) is depicted in Figure 14a, while its decentralized solution is depicted in Figure 14b. 
Observe that flexibility distributions are aligned, i.e., Pearson correlation was found to be 0.75. However, in 
the decentralized solution, there are some rebound effects regarding consumption in the other time slots. The 
decentralized solution has converged in 46 iterations.  

If no peak-tariff pricing is employed, but flexibility rewards are in order, then the desired flexibility is obtained 
(cf. Figure 15a) at a cost for incentive rewards (cf. Figure 15b). The total amount of rewards given is 1.47€ for 
this flexibility event. The flexibility distribution from optimal rewards is almost the same with that of Figure 14a, 
i.e., Pearson correlation coefficient is 0.974, while total flexibility is 2KWh in both cases, which means that the 
users offer the same flexibility regardless of the exact incentive mechanism employed, i.e., peak-tariff pricing 
or rewards. In Figure 15b, we also compare the optimal rewards with those resulting from the distributed 
algorithm. The distribution of rewards per user from the distributed algorithm is smoother than the optimal one, 
while the total cost of incentives is slightly higher than optimal, i.e., 1.68€, as expected. 

    
(a) (b) (a)  (b) 

Figure 13: (a) The baseline consumption. (b) PV power 
generation hourly schedule per prosumer. 

 

Figure 14: Peak-tariff pricing: (a) Optimal flexibility per 
user. (b) Flexibility per user with the distributed 
algorithm. 

 

    
(a) (b) (a) (b) 

Figure 15: Flexibility rewards: (a) Optimal flexibility per 
user; (b) Flexibility profit per user with optimal and 
suboptimal (distributed) rewards. 

Figure 16: PV power generation: (a) Optimal flexibility 
per user, (b) given specific flexibility rewards. 
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We now consider the case of solar power generation according to Figure 13b. We assume that net metering 
is employed, i.e., the feed-in tariff is 0.1 €/KWh. When flexibility rewards are employed instead of peak-tariff 
pricing, then the flexibility provided by the users and their respective rewards are higher, as depicted in Figure 
16a and Figure 16b respectively. This is because, a portion of the baseline consumption can be satisfied by 
the solar power, thus allowing for a higher flexibility. 

We also evaluate the alternative incentive mechanisms in terms of effectiveness for flexibility management. 
Employing only peer pressure and assuming satisfaction from being ranked first ℎ௡  =  1, ∀𝑛 ∈ 𝑁, the flexibility 
offered by the users in the time slot of interest is depicted in Figure 17a. Combining peer-pressure with rewards 
results in lower rewards for aggregating the same amount of flexibility, as illustrated in Figure 17b. 

Moreover, we employed lotteries alone assuming the lottery prize equal to the total cost for rewards per 
flexibility event, i.e., 1.47€, so that a fair comparison can be made. The probability weighting function (i.e., 
𝑒ି(ି ୪୬(௫))బ.ఱ

) (Prelec, 1998) that we employed to express the user prospect with respect to the probability to 
win is depicted in Figure 18a. In Figure 18b, we illustrate the flexibility offered by each user with the different 
forms of incentive schemes (at the same cost when applicable). Next, we consider the case where the 
aggregator aims to find the optimal rewards in order to gather flexibility 2KWh at each of three different time 
slots, namely 11am-12pm, 12-1pm and 1-2pm hours. Employing the aggregate optimization approach (31), 
we find that the optimal reward per flexibility unit is 0.57 €/KWh. As depicted in Figure 19, the optimal rewards 
per user for the three time slots with the multi-slot optimization framework are lower than those that are found 
to be needed by employing the flexibility optimization approach (23) for each of the three time slots 
consecutively. Separate consecutive flexibility optimizations per time slot give optimal rewards per flexibility 
unit of 0.63€/KWh, 0.73€/KWh and 0.82€/KWh respectively for the three time slots. Therefore, as expected, 
myopic optimization of the incentives for flexibility per time slot is outperformed by the multi-slot optimization 
approach. 

  

    
(a) (b) (a)  (b) 

Figure 17: (a) Optimal flexibility per user with peer 
pressure. (b) Flexibility rewards per user when rewards 
are combined with peer pressure. 

Figure 18: (a) A probability weighting function 𝜋. (b) 
Comparison of optimal flexibility per user with different 
incentive schemes. 

  
(a) (b) 

Figure 19: (a) Optimal flexibility rewards per time slot employing (a) multi-slot optimization, (b) consecutive myopic 
optimizations per time slot. 
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4.2 Practical issues for applying incentives 

4.2.1 Dynamic network tariffs 
In the area of promoting investments in smart grids, during the 2016-2018 regulatory period, the Energy 
Agency (the national energy regulator in Slovenia) gave for the first time the DSOs the possibility of using 
dynamic pricing of network fee for electricity. Implementation incentives were focused on performance testing 
during the current regulatory period active inclusion of users in adjustment programs using dynamic pricing - 
pilot critical peak tariff (hereafter PCPT) from Article 123 of the Act on Methodology for determination of network 
charges and criteria for determining eligible costs for electric power networks and methodology for calculating 
network charges (Official Gazette of the Republic of Slovenia, no. 59/10, 52/11, 81/12). 

The PCPT was an experimental network tariff for the distribution system with a special tariff item for transferred 
working energy, which deviated from the normal tariff item and was valid for the duration of the peak network 
load (critical event). For the implementation of this tariff, the number of critical events in a certain period, their 
duration, and the time conditions for notifying customers about their occurrence  were limited in advance. The 
PCPT was intended to dynamically shift end users from peak to off-peak system load, considering the 
availability of energy from renewable energy sources, energy obtained from high-efficiency cogeneration of 
electricity and heat, and distributed generation of electricity. The DSO had to inform the end user at least 24 
hours in advance of the start and duration of the PCPT. The same information had to be published 
simultaneously on the DSO's website. The number of PCPT hours in the calendar year was 50. The DSO had 
to inform the final user, who was included in the project based on consent, about the start and duration of the 
calculation of the network charge according to the pilot tariff and during this period provide him with a detailed 
calculation of the network charge according to all tariff items. The minimum period for calculating the network 
fee according to the pilot tariff was one year. The PCPT tariff item occurred during a critical peak tariff period, 
which could be during a higher or lower tariff period. 

Based on the mentioned incentives, two pilot projects in the field of adjusting electricity consumption with the 
help of dynamic pricing took place in Slovenia in 2017 and 2018: PREMAKNI PORABO project on the 
distribution area of Elektro Maribor and the European research project Flex4Grid on the distribution area of 
Elektro Celje. 

In the regulatory period 2019-2022, for the incentives derived from the Act on the methodology for determining 
the regulatory framework and the methodology for calculating network fees for electricity operators (Official 
Gazette of the Republic of Slovenia, no. 46/18, 47/18 - cor. ., 86/18, 76/19, 78/19 – app., 85/20, 145/21 and 
172/21 – ZOEE), were able to qualify pilot or demonstration projects based on dynamic pricing, which were 
implemented with the aim of answering key development questions regarding the active participation of 
customers in the market, the applicability of new technologies and services in the field of smart networks and 
related market mechanisms, such as using the flexibility of end users. The DSO was able to use the pilot 
mechanisms for calculating the network fee from Articles 135 and 137 of the Act to promote the adjustment of 
demand and the management of electricity consumption.  

From Article 135 follows that the DSO can calculate the network fee for the distribution system based on the 
negative and positive critical peak tariff model, as follows: 

 Positive Critical Peak Tariff (PCPT) is tariff item during peak network load (positive critical peak tariff 
item), which can occur during a higher daily tariff item, a lower daily tariff item or a single daily tariff 
item. 

 Negative Critical Peak Tariff (NCPT) is tariff in times of excess production (negative critical peak 
tariff item), which can occur during times of higher daily tariff item (VT), lower daily tariff item (MT) or 
uniform daily tariff item (ET) for example during peak production from distributed energy sources 
(usually between 11:00 and 16:00) or during the time of minimum consumption, which can also be 
used by customers to charge electric vehicles at night (usually between 0:00 and 04:00). 

The critical peak tariff is intended to reduce the consumption of end users at the time of critical peak load of 
the network, or to increase the consumption of end customers at the time of critical net production of the 
network, with the aim of ensuring the maximum possible load reduction of the network. The time of onset of 
positive or negative critical tariff items is determined by the DSO based on forecasting the operating state, 
taking into account environmental factors or the availability of energy from dispersed energy sources. 

The DSO must effectively inform each end user and aggregator or other authorized person (if the end customer 
participates in the project through them) about the start and duration of the PCPT or NCPT, namely: 
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 must notify the end customer, whose loads are not automatically controlled, by direct notification at 
least 24 hours in advance before the activation of the measure; 

 to the final customer, whose loads are automatically controlled (directly or indirectly through the local 
energy management system), forwards the demand adjustment request in accordance with the 
technical requirements of the technology used and the operational requirements of each measure. 

 The minimum number of PCPT hours in a calendar year is 30 and the maximum is 100. The 
maximum possible number of NCPT hours in a calendar year is limited to 3,650. 

Elektro Celje used the incentive from Article 135 of the act in the national project USE IT WISELY, which took 
place in 2021. 

The incentive, which comes from Article 137 of the Act, is intended for the pilot billing of self-consumption with 
the electrical energy for users in the community. A community of end customers is defined as a community 
with one or more production devices from renewable energy sources, connected at low voltage to the same 
local transformer station, participating in a qualified project, it is possible to calculate the network fee based on 
the concept of locational netting of production and consumption of all users in the community with a billing 
interval of 1 hour. All collection and delivery points in the community must belong to the same responsible 
balance group. 

The DSO determines the administrative measurement point, in which it determines the net received or 
transmitted energy of the community based on measurements at the collection and delivery points of all users 
in the community. 

End users in the community are entitled to compensation for achieving self-sufficiency in the form of a reduction 
in network fees and it depends on the determined amount of energy of group self-sufficiency in the community 
within individual billing intervals. The energy of group self-sufficiency in the community is the amount of 
absorbed energy of all end customers in the community, which is fully covered in a single billing interval by the 
transmitted electricity produced in all production facilities from renewable energy sources in the community. 
The distribution operator determines the compensation for each interval by distributing group self-sufficiency 
energy among all end-users in the community in proportion to the share of energy received by each end-user 
and multiplying the obtained amounts by the valid tariff network item in the billing interval and a factor of 0.8. 

The compensation from the previous paragraph is shown by the distribution operator on the account of the 
active customer in the form of a special separate item of network fee reduction for achieving self-sufficiency in 
the community. 

The distribution operator must provide the end customer and the aggregator or other authorized person with 
effective access to information on the end customer's consumption, the proportional share of the amount of 
energy of group self-sufficiency, the total amount of energy produced and received in the community, and the 
net delivered or received energy at the level of the administrative measuring point of the community from of 
the second paragraph of this article. The DSO must provide the end user with access to the detailed calculation 
of the network fee in accordance with the law. Information must be organized and displayed in a transparent 
manner. The end customer must also have access to an itemized bill according to the normal system tariff 
monthly for comparison purposes. The DSO must provide the client with access to this data for the duration of 
the pilot project. 

If the end user's energy supplier issues a joint invoice for energy supply and network use, the DSO must 
forward all the necessary data for billing and display of the item on the invoice from the previous paragraph to 
the competent supplier. 

In the future in Slovenia, the dynamic tariffing of network charges for electricity will no longer be intended for 
pilot projects but will be part of regular legislation. For the purpose of promoting flexible use of the network in 
various closed geographical areas of the distribution system, the distribution operator determines dynamic 
tariff items for the network fee for the distribution system. The DSO will determine the local dynamic tariff in 
such a way that, based on the dynamic tariff items of the network charge for the distribution system for each 
closed geographical area, the user of the system will be encouraged to provide net benefits through adjusted 
use of the network. 

The local dynamic tariff will primarily be aimed at reducing the consumption of system users at the time of 
critical peak load of the local network or increasing the consumption of system users at the time of critical net 
production of the local network with the aim of ensuring the greatest possible relief of the distribution system, 
reducing electricity losses or ensuring adequate voltage quality in the local network. The onset of dynamic 
tariff items for the network fee for the distribution system can be predicted in advance or in real time. The 
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period of validity and the amount of dynamic tariff items will be determined by the DSO based on forecasting 
the operating state, considering environmental factors or the availability of energy from dispersed energy 
sources. The DSO will determine the dynamic tariff items of the network charge for the distribution system for 
working energy with the aim of encouraging the adaptation of the use of the network so that the aggregated 
tariff item of the network charge for energy is markedly increased or markedly reduced in each billing interval. 

 

4.2.2 Slovenian pilot rewards in current tariff system 

There are currently no dynamic tariffs available in the Slovenian pilot area, as far as the price aspect of 
electricity for household consumption is concerned. Electricity prices with a resolution of 1 hour are available 
on the https://www.bsp-southpool.com/day-ahead-trading-results-si.html website, namely for the intraday and 
day ahead market, but none of the electricity retailers offer such packages to the end customers. From this 
point of view, it is not possible to expect benefits from the dynamic electricity price tariffing in the Slovenian 
pilot area. On the basis of dynamic pricing the end users could adjust the consumption of electricity on an 
hourly basis which would be directly correlated with price aspect on bill at the end of the month. 

Currently, in the abovementioned pilot area, it is possible to choose between a one-tariff and a two-tariff system 
for recording and price evaluation of consumed electricity. The single tariff system includes all business and 
household electricity consumers who have installed self-sufficient solar power plants and other electricity 
consumers who want to receive electricity at a single tariff within one day. In the two-tariff system, there are 
household and business customers who do not have a self-sufficient solar power plant installed and who want 
to receive electricity according to the two-tariff system (the lower tariff is the tariff that starts at 10:00 p.m. of 
the previous day and ends at 6:00 a.m. of the day, the higher tariff starts at 6:00 a.m. and ends at 10:00 p.m. 
within the same day). For end users who use one tariff system for recording the consumed electricity and have 
a self-sufficient solar power plant installed at the same time, it is optimal for the consumption inside the building 
to increase when the production from the self-sufficient solar power plant is the highest. In such a case, the 
end user is enabled not to take electricity from the network during periods of the day when he does not have 
his own production (period when electricity is more expensive), but instead has energy already prepared in the 
facility, which he can release in periods when needs (e.g. the produced electricity is stored with the help of a 
heat pump in a heat storage tank). In this case, the incentive for the end user is that electricity, which is 
cheaper, is primarily used. 

On the other hand, the end user who uses two-tariff metering of consumed electricity is enabled to pre-prepare 
the facility during periods of lower tariffs (heat up the water inside the water storage boiler with heat pump) by 
releasing (heat up the building with pre stored hot water) stored electricity (stored inside hot water) into the 
facility itself during periods of higher tariffs. In this case, the incentive for the end user is the difference between 
the price of electricity in the higher tariff and the lower tariff. In the current situation, there is a 30% difference 
between the high and the low tariff for the electricity used in household consumption. 

 

4.2.3 Personal, social and moral incentives 

The Slovenian pilot has already identified a number of personal incentives (see below) that will be emphasised 
to potential and existing pilot participants and a forthcoming co-creation workshop will explore the types of and 
how social and moral incentives can be used to further support user engagement in DR.  

Personal incentives cover both monetary and non-monetary rewards that, when presented to the customer, 
will motivate them to participate in DR. In the Slovenian pilot, getting free HEMS and sensors installed is a 
prerequisite for participating in DR events which will allow customers the opportunity to gain better insight into 
their energy consumption and potentially save money. For example, end user will be able to monitor the 
consumption of electricity in real time and, based on this, determine which device consumes the most 
(investment in more energy efficient devices). Visualising energy costs, energy consumption and current 
network grid status in the iFLEX Assistant App can make the consumer feel more in control, more efficient and 
smarter, thus also trigger non-monetary personal incentives. The planned co-creation workshop will explore 
what to visualise and how in order to support DR engagement. 

Information material to support the recruitment of pilot participants will also highlight other benefits which 
support the personal incentive, e.g., that the network conditions for the distribution of electricity will improve 
for the end user (less grid voltage fluctuation), which for end users with a solar power plant means constant 
operation of the inverter at full power. The coefficient of self-consumption of the produced electricity from the 
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solar power plant will thus increase for the end user. Another motivating factor is that the end user’s equipment 
will operate in optimal weather conditions (improvement of coefficient of performance COP of heat pump).  

As noted above, the forthcoming co-creation workshop with potential and existing pilot participants, will explore 
the value and meaning of exploiting social and moral incentives to get end users engaged (long-term) in DR. 
From a practical perspective, the workshop will discuss concrete ideas of how to implement and deploy such 
incentives so that they support and complement economic and personal incentives. Activating and tapping into 
social and moral incentives can be done in the iFLEX Assistant App itself and as such do not represent an 
explicit new service, product, or pricing model etc. (excluding DR and the iFLEX solution of course); rather by 
exploiting this type of incentives one reaches end users who are not wholly motivated by saving money. End 
user may of course still potentially save money because by participating in DR they may consume cheaper 
energy if not also less energy. Consequently, the DSO, energy provider etc. will also benefit as the end user 
participates in the DR events.   

 

4.2.4 Flexibility measurement and verification 

One key aspect of unlocking user participation in grid management via providing flexibility is having a solid 
Measurement and Verification plan, in order to calculate the amount of provided flexibility in response to 
Demand Response (DR) events. Within the context of the Slovenian pilot, implicit (i.e. tariff-based) and – 
possibly – explicit (i.e. incentive-based) DR will be tested. Hence, we need to separate the different cases of 
DR: explicit vs. implicit. 

In explicit DR events, potential participants are requested to shift the consumption of certain flexible assets in 
a specific way. More detailed information on flexibility measurement and verification in the case of explicit DR 
is provided in the respective paragraph for the Greek pilot, namely Section 3.2.3. To be more precise on the 
Slovenian case, HVACs or heat pumps will constitute the main source of flexibility. Their metering data will be 
collected via the smart meters installed in the users’ premises. 

As regards implicit DR events, a different approach should be adopted due to their nature. To elaborate on 
this aspect, the potential participants in these programs are just informed about reduced tariffs in upcoming 
time periods and it is up to them to decide whether to adjust their electricity consumption. It is highlighted that 
potential participants are not requested to respond to the Aggregator. Hence, the proposed approach in order 
to calculate the harvested flexibility from the pilot users is to compare their total electricity consumption during 
the implicit DR event with their baseline consumption, as calculated by the Digital Twin Repository (DTR). 
Thus, the – positive or negative – difference of the actual consumption to the baseline can be calculated. 
Based on this approach, the iFLEX partners will be able to estimate the responsiveness of pilot users to implicit 
DR events. The dispatch of implicit DR events is expected to be investigated in the iFLEX project exclusively 
within the context of the Slovenian pilot. 
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5 Incentive mechanisms for the Finnish pilot 

The flexibility in the Finnish pilot comes from the building’s heating system, which is based on district heating, 
and especially from the thermal mass of the building that can be used to store energy. The occupants of the 
building have a lower limit for indoor temperature in their apartments, which provides the constraint for the 
flexibility management in the iFLEX Assistant. The indoor temperature lower limit in the apartments of the pilot 
building is set to 21 degrees Celsius and it has been agreed with the residents and specified in their rental 
contract. The same limit is used by the building management system operating the heating system. The 
flexibility management is based on the assumption that when the heating is turned off the heating energy 
stored in the building floors and walls can be utilized to provide flexibility before the indoor temperature drops 
below the limit (pre-heating is also possible to increase the indoor temperature and amount of heat stored into 
the building). The results obtained from the phase 1 of the pilots validate this assumption. The average amount 
of flexible capacity in the DR events was 195 kWh (divided between district heating and electricity). This was 
achieved with an average drop of 0.5 Celsius degree (the typical temperature during experiments was over 
21.5 Celsius degree). If we would increase the variation to 1.0 Celsius degree (i.e., between 22.0 to 21.0 
Celsius degree) the flexibility would increase to 390 kWh.  

5.1 Modeling and analysis of economic incentive mechanisms 

5.1.1 The Model 

The building manager aims to acquire flexibility regarding district heating energy by turning on/off the heating, 
and obtain: 

 value, by selling the flexibility (possibly through an aggregator) in the real-time wholesale/balancing 
market, and/or 

 savings in the electricity bill (if any), in light of day-ahead hourly prices 

Therefore, the net value (NV) of the flexibility equals: value plus savings, which should be always positive for 
building participation in flexibility management to be meaningful. The ultimate objective would be to maximize 
NV in the next 24h period, by turning on/off the heating for certain periods to be optimally selected, i.e., the 
start time and the duration of turning off the heating, also taking into account the following: 

 internal temperature constraints 

 external temperature forecast 

 thermal model of the building, e.g., parameters κ,λ (Li et al, 2011) 

 model of possible rebound effect (this is the extra energy to heat the building after the flexibility period 
again modeled based on building thermal parameters and forecast on outside temperature) 

 flexibility value forecasts in the wholesale/balancing market 

 building ”participation constraint”, namely that the total NV is at least 0 (obtained by doing nothing), or 
that the total NV exceeds a certain preset threshold to compensate for the costs of infrastructure and 
effort to apply the procedure. If the majority of users in the building are dissatisfied with the indoor 
temperature or the latter falls below its lowest acceptable bound, then the flexibility period is terminated 
(even before its prespecified duration). 

Our objective, for the time being, on behalf of the flexibility aggregator is to maximize flexibility (i.e., total energy 
savings) at a specific time slot of interest τ, while satisfying temperature constraints of the building occupants 
and not affecting user comfort at all or if affected (even insignificantly) to be properly compensated by means 
of incentives (not necessarily monetary). 

We denote as xtn,0 the baseline energy consumption at time slot t, which consists of a portion for district heating 
htn,0 and another portion for electricity consumption wtn,0. xtn, htn, wtn denote the respective flexibility values 
offered by customer n. The building receives a monthly energy bill for the whole building which is apportioned 
to its residents. Let us assume c(xn) to be the energy bill for customer n. Note that while cutting off district 
heating energy corresponds to an equal reduction in heating energy consumed by each occupant n, their 
electricity consumptions may be different, while the occupants may also contradict the flexibility management 
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mechanism by increasing their electricity consumption component of energy at the time slot of interest, e.g., 
by turning on electrical HVAC devices, the cooking oven, the electrical blankets and so on to compensate for 
the loss of heat. The occupants might also decrease their electricity consumption at the time slot of interest, 
e.g., by leaving the apartment. 

We assume that the temperature drops with a linear model (Li et al, 2011), as described below: 

 

(36) 

Then, the aggregator’s problem is to maximize energy flexibility at time slot τ as described below: 

 

(37) 

 

(38) 

 

(39) 

 

(40) 

r denotes the reward per unit of energy flexibility provided by the aggregator, c(.) is the billing function for 
energy consumption of occupant n and B denotes the budget limit of the flexibility provider to pay the rewards. 
The first constraint corresponds to individual rationality for each occupant n to participate in the flexibility 
management mechanism: the total reward for energy flexibility provided by the aggregator for each occupant 
n plus the energy bill savings should be greater or equal to the utility loss due to the offered flexibility of the 
occupant n. The second constraint aims to maintain the indoor temperature in each occupant’s apartment 
within the constraints Tn

min, Tn
max, which can be also personalized. The third constraint in the optimization 

problem above corresponds to the budget limit of the aggregator for flexibility rewards. 

The utility function U(.) is considered to be a concave continuously differentiable function of the indoor 
temperature, i.e., square root of the indoor temperature per time slot. The billing function can incorporate 
dynamic pricing, e.g., based on a dynamic tariff vector ψ for the different time slots of the day.  

Note that the following facts hold true for the Finnish pilot: 

• There is no electricity meter per apartment.  

• Users have comfort constraints regarding temperature. 

• Flexibility provided affects temperature. 

• Users lose utility value (e.g., according to a concave function) from temperature drop. 

• The bill for district heating is shared over all apartments and common space of the building. 

 

5.1.2 Numerical Evaluation 

We employed the REDD dataset (Kolter et al, 2011) regarding the baseline consumption of the users. This 
dataset contains detailed smart meter measurements and sensor readings with one-second time granularity 
for 6 houses. We aggregated the energy consumption in hourly slots and these are the baseline consumptions 
that we assumed in our evaluation, cf. Figure 20. The time slot of interest for aggregating flexibility is τ=13. 
First, we consider a “zero-discomfort and zero-incentives” version of the problem and maximize flexibility for 
the building manager, which can be extracted by each user without violating his individual temperature 
constraints. This corresponds to the problem (37) setting B=0 EUR in equation (40). The temperature 
constraints are set to be equal for all user: the minimum acceptable indoor temperature is assumed to be 
Tmin=21 degrees Celsius and the maximum acceptable indoor temperature is assumed to be Tmax=25 degrees 
Celsius. The indoor temperature at each apartment at the time slot of interest τ is assumed to be Tin=22 
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degrees Celsius, while the outdoor temperature is assumed to be Tout=2 degrees Celsius. The thermal 
parameters of the building are taken to be κ=0.03 (thermal insulation of the building), λ=4 (efficiency of the 
heating system of the building).  First, we assume that there is no user discomfort associated to the indoor 
temperature drop as long as the indoor temperature remains within the desired bounds. Then, the flexibility 
obtained by each building is depicted in Figure 20. 

 

Figure 20: The baseline hourly energy consumption for 6 apartments. 

 

 

Figure 21: Flexibility given by users under no rewards, but incur no utility loss from indoor temperature drop 
within tolerable limits. B=0, Tmin=20, Tmax=25, Tin=22, Tout=2. 

 

Then, we consider the case that there is utility loss (i.e., discomfort) associated with the indoor temperature 
drop for the occupants. Again, we assume no rewards. Then, the flexibility that can be obtained by the building 
manager is depicted in Figure 22. Evidently, it is individually rational for occupants to offer less flexibility in this 
case, as compared to the case of no discomfort associated with indoor temperature drop. 
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Figure 22: Flexibility given by users under no rewards that incur utility loss from indoor temperature drop 
within tolerable limits. B=0, Tmin=20, Tmax=25, Tin=22, Tout=2. 

Subsequently, we consider the case that the building manager compensates users for their discomfort for 
indoor temperature drop and specifically we assume that B=10 EUR. Then, as depicted in Figure 23, the 
maximum flexibility that can be obtained by the flexibility manager rises up to the point of Figure 21. Therefore, 
rewards totally compensate users for their discomfort due to the flexibility obtained from them. The rewards 
given to each occupant are depicted in Figure 24. 

 

Figure 23: Flexibility given by users that incur utility loss from indoor temperature drop within tolerable limits and they are 
compensated with rewards. B=10, Tmin=20, Tmax=25, Tin=22, Tout=2. 
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Figure 24: The rewards that compensate users for their flexibility when discomfort from indoor temperature drop is 
incurred to them. 

Note that in case that no discomfort arises for building occupants from indoor temperature drop within the 
tolerable limits, there should be no need for compensating them with any rewards. We numerically evaluate 
this setting by assuming no utility loss from temperature drop for building occupants but non-zero available 
budget for user rewards, i.e., B=10 EUR. Then, as depicted in Figure 25. 

 

Figure 25: No rewards are needed for users for obtaining flexibility from them, when there is no utility loss associated to 
the flexibility exerted. 
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5.2 Practical issues for applying incentives 

5.2.1 Incentives, Business, and Technical Issues 

In the Finnish pilot the idea is to study iFLEX Assistants that operate HVAC system in a more intelligent way, 
improving energy efficiency and harnessing flexibility without the need to disturb the residents of the building. 
This means that the incentives should motivate the consumers to invest in iFLEX Assistant solutions that 
automate and personalize flexibility management. These incentives can be divided into the following three 
categories: 

 Personal incentives: Achieving optimal smart building operation, keeping the building’s energy costs 
at a minimum and offering the flexibility for share any savings/bonuses attained by being flexible.  

 Social incentives: Actively contribute to a sustainable building energy consumption (being seen to 
do the right thing). 

 Moral incentives: Track the building’s performance and progress (How am I / are we doing and am I 
/ are we doing enough?). 

While the absence of smart meters at the apartment level at the Finnish pilot contradicts our mathematical 
model, which assumes that the total energy consumption (i.e., electrical and heating) per building occupant 
can be measured, the model is still useful to investigate user incentives and behavior when such a flexibility 
management mechanism is employed in practical settings. For validating the findings of our model, individual 
smart meters are planned to be deployed in a handful of apartments in phase III of the pilot experiments. 

In the Finnish pilot, the focus is on apartment building(s) with centralized HVAC system. This type of building 
forms a kind of energy community where the energy costs (and CO2 footprint) of the building are shared 
between residents (and the building owner). These types of buildings can be further classified into owner 
occupied flats and rental flats. With owner occupied flats the housing cooperative (formed by the flat 
residents/owners) makes the decision on investing iFLEX Assistant type of solutions. With rental flats the 
investment is made by the building owner. Therefore, the main incentives should be also targeted to them 
although residents also benefit indirectly through cheaper rents (residents could also priority the CO2 footprint 
of the building when selecting the flat to rent). The pilot building provides rental flats for students and is owned 
by an association called HOAS.  

In practice this means that the iFLEX Assistant needs to be able to visualize the benefits for the building owner 
and residents. For the building owner these calculations are needed to demonstrate that they should invest in 
such technologies in other buildings as well. The results can be also used as a reference when targeting other 
building owners and housing cooperatives, as well as, to later validate that the promised benefits have been 
achieved with the investments. To this end, following visualizations are planned for the Finnish pilot: 1) 
reduction of energy costs (e.g., improved energy efficiency and implicit DR), 2) estimates on the revenue from 
explicit DR (i.e., participation through aggregation), and 3) estimates on CO2 reduction, and 4) estimates on 
flexibility available for RES integration and balancing. 

There are many different products in the flexibility market. Some products are used for reserve (frequency 
regulation), such as Fast Frequency Regulation (FFR) (Fingrid, n.d.), Frequency Containment reserves, 
Normal or Disturbance (FCR-N or FCR-D) (Fingrid, n.d.), and Automatic Frequency Restoration Reserve 
(aFRR) (Fingrid, n.d.) in the Finnish flexibility market. These products are very critical for maintaining control 
and stability of the Nordic power system and therefore, there is a strict technical requirement and 
prequalification test for these products. Some other products are used for balancing; they are important for 
keeping the power system stable, but they are not as critical as reserve products. The providers usually have 
more time to react according to the Transmission system operator (TSO) request. As an example of balancing 
products, Manual Frequency Restoration Reserve (mFRR) can be named. There are other products that can 
be used for solving a local challenge, such as congestion in one distribution or transmission line. 

The variety of flexibility products, the technical requirement and prequalification process, and also the minimum 
acceptable bid size in each market are some of the challenges for flexibility provision by small-sized customers. 
In addition, each country or system operator, including distribution and transmission system operators, may 
have its own technical requirements, which may be slightly different from the other one. Each of them may 
have its own platform working as a market operator and it makes it very difficult for the flexibility service 
providers (FSP) to integrate. There are other issues as well. For example, when there are no large harmonized 
markets, system operators cannot count certainly on the availability of flexibility resources at different times as 
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a trustworthy solution; on the other hand, FSP cannot find a stable market with predictable prices for flexibility 
and would not invest on flexibility provision. 

To solve some of these challenges in a systematic way, there are several research projects working on defining 
new holistic and harmonized solutions for flexibility market, for instance, the project defined under EU’s eighth 
Framework Programme Horizon 2020 titled “TSO – DSO Consumer: Large-scale demonstrations of innovative 
grid services through demand response, storage and small-scale (RES) generation”. Among them, the iFlex 
project collaborates with INTERRFACE and OneNet projects that create a cross-border, harmonized, and TSO 
& DSO coordinated market-based approach. The Market structure designed in OneNet aims to  

 Seamless end-to-end process for market-based flexibility: OneNet developed a harmonized and 
coordinated process for selecting and activating flexibility in multiple networks using real-time network 
states. 

 Lower the entry barrier for flexibility by simplifying the process for flexibility service providers: 
OneNet defined six general-purpose flexibility products; simplified and standardized prequalification, 
selection, and settlement processes. 

 Ensure availability of short-term flexibility from multiple sources: OneNet defined two new roles, 
Flexibility Register and TSO/DSO coordination to allow complex interactions between multiple 
resources, through multiple marketplaces, toward multiple networks, locally and across country 
borders. 

More details on the collaboration between iFLEX and OneNet can be found in D8.1 of iFLEX. 

By integrating the iFLEX concept with the OneNet market platform, some of the technical barriers to market 
integration of small-sized resources and providing monetary incentives for providers can be inherently 
mitigated. However, still, some challenges will remain. 

As already mentioned, each flexibility product has technical requirements, a prequalification process, and a 
minimum acceptable bid size. In other words, an individual small-sized resource cannot participate in the 
market alone. There must be an aggregator that aggregates appropriate small-sized resources to create large 
enough and long enough bids for a specific market. Besides difficulties in finding the optimum market products 
for each resource, and optimum price for each aggregated bid, there are some other technical challenges that 
the iFLEX project is working on mitigating them. 

Currently, in a normal situation, each customer is equipped with a smart meter that can measure the total 
consumption of a customer with a time resolution in the order of 1 h or 15 minutes. In these circumstances, 
FSP cannot measure the exact flexibility of each flexible resource separately. This type of measurement may 
not be enough for the prequalification process of critical products, such as FFR or FCR. To tackle this problem, 
the Finnish pilot building is equipped with a frequency meter that provides accurate enough measurements for 
the markets. 

5.2.2 Baseline Calculation 

In addition to load validation with measurements, there is a need to predict the baseline load of the consumer. 
The baseline is the normal consumption of a customer when there is no flexibility provision. In order to calculate 
the flexibility, the baseline needs to be calculated first. In large and industrial customers, the behavior is highly 
predictable. However, in a household customer, the behavior varies day by day. Therefore, calculating the 
baseline is not an easy way. Several studies work on baseline calculation for different products. They use the 
historical data for calculating the baseline. A methodology to calculate the baseline is the X of Y methodology: 
“The X of Y methodology involves averaging the level of demand/generation over X days in the last Y eligible 
days. The X days should be selected to best represent the event day (resource activation). A common variation 
of this method is the “High X of Y”, which considers the X days with highest consumption in the Yday set. This 
is done for two reasons. Firstly, demand response programs will usually call for consumption reduction from 
consumers on days with very high consumption. Secondly, the High X of Y also minimizes the risk of 
unintended incentives that could result from underestimating the baseline.” In the iFLEX project we address 
the baseline problem by forecasting the building baseline profile with an innovative approach that combines 
machine learning with physics-based modelling. By comparing the baseline forecast with the measurements 
outside of the DR events we can calculate the accuracy of the baseline estimation and take this into account 
in the flexibility offerings and compensation. 

This deviation from the baseline is offered to the TSO reserve markets as flexible capacity. In household 
consumption, the amount of flexibility depends highly on the behaviour of the tenants. It makes it very difficult 
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to predict the flexibility potential of a customer in advance, especially when there is no detailed measurement 
at the level of each resource. The lack of accurate estimation of flexibility in advance can highly reduce the 
monetary incentives in two ways: 1) If the aggregator cannot fulfil the bid, which is calculated according to the 
estimation, they need to pay a penalty, which usually is a couple of time larger than remuneration. 2) if the 
aggregator does not have long time accurate forecast, they cannot participate in capacity (availability market) 
which usually occurs a month to one year before the delivery time. To address this challenge the same hybrid 
modelling approach is utilized for forecasting the baseline consumption. 
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6 Conclusion 

This deliverable has reported on the development, modelling, and assessment of economic incentive 
mechanisms for the three iFLEX pilots as carried out by Task 5.3 – Incentive mechanisms and consumer 
engagement, following submission of D5.2. In particular, a tailored approach was developed for each of the 
pilots due to their inherent differences. Therefore, appropriate individual models regarding the economic 
incentive mechanisms and their analysis are presented in this deliverable, together with the respective issues 
on the practical applicability of these mechanisms and with ideas for their combination with non-economic 
incentive mechanisms. 

In particular, for the Greek pilot, an approach for the optimal management of the flexibility offered by residential 
users under uncertainty was developed; indeed, such uncertainty in the consumer response to the Demand 
Response (DR) signals may disrupt the goal of demand flexibility management. Therefore, a probabilistic user 
model to account for the uncertainty regarding whether a user will indeed achieve the flexibility specified (in 
conjunction with the incentives offered to this user) was developed, and subsequently introduced in the DR 
targeting process. Then, a suitable optimization framework to enable flexibility maximization and budget 
minimization was specified, comprising separate single-objective expressions with the appropriate constraints. 
Moreover, specific representative problems were defined and solved numerically for a wide range of user 
parameters, in order to illustrate the applicability and accuracy of the method, and to extract valuable insights. 
Also, techniques to resolve practical issues and to enable real-world implementation of the proposed scheme 
in the pilot sites were developed. Finally, practical issues on how to apply this approach in practice, and how 
to promote user engagement were defined, including the definition of appropriate lottery mechanisms 
motivated by prospect theory.  

For the Slovenian pilot, an optimization framework that provides different forms of economic and non-economic 
incentives to prosumers with their own renewable resources (as opposed to simply consumers, which is the 
case with the other two pilots) was specified; this includes rewards, lotteries, peer-pressure, for providing 
flexibility at specific time slots. Dynamic tariffs per time slot for purchasing and selling electricity are 
accommodated in this framework as well. The overall problem is formulated as a Stackelberg game, played in 
turns by the aggregator and the users, and its analytical solution for simple cases of user utility functions is 
outlined for the case of full information by the aggregator concerning user-utility functions. Moreover, a 
distributed iterative algorithm is developed for solving the flexibility-management problem in the case where 
these functions are not known to the aggregator. Numerical results show that this optimization framework is 
capable to elicit the required flexibility from users at a minimum incentive cost, especially when monetary 
rewards are combined with peer pressure. 

As for the Finnish pilot, the flexibility is taken to emerge from the building’s heating system, and especially from 
the thermal mass of the building that can be used to store energy. Flexibility management is based on the 
assumption that when the heating is turned off the heat energy stored in the building can be utilized to provide 
flexibility before the indoor temperature drops below the contractually agree lower limit. Therefore, again an 
appropriate optimization problem was specified; namely, the objective is to maximize flexibility, while several 
factors are taken into account, such as internal temperature constraints, evolution of this temperature on the 
basis of external temperature forecast and thermal model of the building, and budget constraints incentives. 
Numerical results revealed that even when the internal temperature limit is not violated, the use of monetary 
incentive to compensate users for their discomfort leads to higher total flexibility. Issues on the practical 
implementation of the incentives’ scheme considered, such as a method for calculating the baseline load, were 
also discussed.  

As a final remark, it should be noted that the presented DR incentive mechanisms and schemes for the Greek 
pilots will be fine-tuned according to the insights that the project will gain from the analysis of users’ responses 
to questionnaires (which is in progress) as well as from the interaction with user groups both in the workshops 
to be carried out with them and in the pilots themselves. These insights will also provide useful input for 
completing the modelling of combinations of monetary and non-monetary incentives.  
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