

Intelligent Assistants for Flexibility Management
(Grant Agreement No 957670)

D6.3 Refined Common iFLEX Framework

Date: 2022-10-11

Version 1.0

Published by the iFLEX Consortium

Dissemination Level: PU - Public

Co-funded by the European Union’s Horizon 2020 Framework Programme for Research and Innovation
under Grant Agreement No 957670

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 2 of 24 Submission date: 2022-08-2911

Document control page

Document file: D6.3 Revised Common iFLEX Framework 1.0.docx
Document version: 1.0
Document owner: VTT

Work package: WP6 System integration and service packaging
Deliverable type: DEM - Demonstrator, pilot, prototype

Document status: Approved by the document owner for internal review
 Approved for submission to the EC

Document history:

Version Author(s) Date Summary of changes made

0.1 Anne Immonen, Jussi Kiljander
(VTT)

2022-08-31 ToC, structure, updated descriptions of
Automated Flexibility Management, Digital
Twin Repository, and Weather Service
Interface.

0.2 Dušan Gabrijelčič (JSI) 2022-10-03 Info on RAI and Security and privacy services

0.3 Nicolaos Charitos (ICOM) 2022-10-04 Updated descriptions of Aggregator and
Market interface, and End-user interface

0.4 Anne Immonen (VTT) 2022-10-04 Version prepared for internal review

1.0 Anne Immonen (VTT) 2022-10-11 Final version submitted to the European
Commission

Internal review history:

Reviewed by Date Summary of comments

Christos Simoglou (OPTIMUS) 2022-10-07 Accepted with minor changes

Christos Krasopoulos (AUEB) 2022-10-7 Some suggestion and improvements

Legal Notice

The information in this document is subject to change without notice.

The Members of the iFLEX Consortium make no warranty of any kind with regard to this document,
including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose.
The Members of the iFLEX Consortium shall not be held liable for errors contained herein or direct,
indirect, special, incidental or consequential damages in connection with the furnishing, performance, or
use of this material.

Possible inaccuracies of information are under the responsibility of the project. This report reflects solely
the views of its authors. The European Commission is not liable for any use that may be made of the
information contained therein.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 3 of 24 Submission date: 2022-08-2911

Index:
List of abbreviations ... 4

1 Executive summary .. 5

2 Introduction .. 6
2.1 Purpose, context and scope ... 6
2.2 Content and structure ... 6

3 Overview ... 7
3.1 Relation to use cases ... 7
3.2 Relation to the functional architecture of the iFLEX Framework 7
3.3 Second phase focus ... 8

4 Implementation for phase two ... 10
4.1 Aggregator and market interface ... 10

4.1.1 Aggregation Platforms ... 11
4.2 End-user interface .. 12
4.3 Resource abstraction interface ... 14
4.4 Automated flexibility management .. 15
4.5 Digital twin repository ... 17
4.6 Weather service interface ... 19
4.7 Security and privacy interface ... 20

5 Conclusion .. 22

6 List of figures and tables.. 23
6.1 Figures ... 23

7 References .. 24

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 4 of 24 Submission date: 2022-08-2911

List of abbreviations

Abbreviation Term

A&M (Interface) Aggregator and Market (Interface)

ADR Automated Demand Response

AFM Automated Flexibility Manager

AMI Advanced Metering Infrastructure

ANN Artificial Neural Network

API Application Programming Interface

BEMS Building Energy Management System

BRP Balance Responsible Party

DB Database

DH District Heat

DR Demand Response

DRMS Demand Response Management System (from OpenADR terminology)

DT Digital Twin

ENTSO-E European Network of Transmission System Operators for Electricity

FOI Flexibility Operator Interface

FMI Finnish Meteorological Institute

HEMS Home Energy Management System

iFA iFLEX Assistant

MQTT Message Queuing Telemetry Transport

OASIS Organization for the Advancement of Structured Information Standards

oBIX open Building Information Xchange

RAI Resource Abstraction Interface

REST API Representational State Transfer Application Programming Interface

SaaS Software as a Service

UI User Interface

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 5 of 24 Submission date: 2022-08-2911

1 Executive summary

This document describes the revised common iFLEX Framework. Task 6.2 Integration of submodules into a
common software framework is responsible for the integration of the components developed in the technical
Work Packages into the common iFLEX software framework. It is based on Task 6.1 Continuous integration
and deployment planning that defines the continuous integration (and deployment plan) and mechanisms, and
Task 2.3 iFLEX Framework architecture design that specifies the iFLEX Assistant system architecture. As D2.3
provides the general document for the said integration by defining the component interfaces at the logical level,
T6.2 executes the co-development and integration at the practical level (i.e., software implementation and
packaging). Thus, the common iFLEX software framework provides the libraries, scripts and tools for creating
application-specific iFLEX Assistant instances.

The development of the common iFLEX framework is a continuous and iterative process executed in three
distinct phases. This document describes the high-level summary of the second phase implementation of the
seven functional components that construct the iFLEX framework, as follows: Aggregator and Market Interface,
End-user Interface, Resource Abstraction Interface, Automated Flexibility Management, Digital Twin
Repository, Weather Service and Security and Privacy Interface. Aggregator and market interface and End-
user interface enable the interaction between the relevant actors and the iFLEX Assistant, whereas Resource
abstraction interface enables the iFLEX Assistant to monitor and control relevant aspects in the
consumer/prosumer premises. Automated flexibility management provides services for implementing demand-
response control and optimization operations. Digital twin repository estimates the impact of a consumer and
provides optimal and consumer-centric flexibility management. Weather service provides country-specific data
about weather forecasts and, finally, Security and privacy interface ensures trust and security among all
elements of the iFLEX framework.

For household-specific iFLEX Assistants (Slovenia and Greek pilots), the implementation concentrates on the
Resource abstraction interface to enable data collection and control of flexible assets via smart meters and
Home Energy Management Systems (HEMS), and on mock-up implementation of the End-user Interface to
collect feedback on the design from pre-pilot participants and allow co-creation of new functionalities. For
iFLEX Assistant targeted to apartment buildings (Finnish pilot), the implementation focuses on data collection,
flexibility management experiments and testing. Also, the goal is to experiment with the Automated flexibility
management and associated Digital twin repository modules, and to deploy and collect feedback via an End-
user interface designed for residents of an apartment building. The developed solutions are different in some
parts of the different pilots.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 6 of 24 Submission date: 2022-08-2911

2 Introduction

2.1 Purpose, context and scope

This is a demonstrator-type deliverable that documents the refined version of the iFLEX Framework. The iFLEX
Framework is a software framework for the development of intelligent assistants for flexibility and holistic
energy management. It consists of the following modules: Aggregator and Market Interface, End-user
Interface, Resource Abstraction Interface, Automated Flexibility Management, Digital twin repository, Weather
service and Security and privacy interface. The iFLEX Assistant is an application-specific instance of an
intelligent assistant developed on top of the common iFLEX Framework.

The iFLEX Framework development is an iterative process implemented in three phases:

• Phase one: A pre-pilot with the Minimum Viable Product of the iFLEX Framework and Assistants has
been carried out with selected users (this phase has already been concluded).

• Phase two: A small-scale pilot including the iFLEX Framework with full functionality will be validated
with small-scale pilot groups.

• Phase three: The improved iFLEX Framework will be deployed and validated in large-scale pilots.

This document describes the revised common iFLEX Framework in Phase two. Compared to the initial
framework, the main updates include the fully revision of the implementation and documentation of the
modules to match the second phase status.

2.2 Content and structure

This document is structured as follows. Section 3 describes how the iFLEX Framework is related to use cases
and iFLEX architecture, and then the focus of the second implementation phase is introduced. Section 4
introduces the implementation of the main components of the iFLEX Framework. Concluding remarks are
provided in Section 5.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 7 of 24 Submission date: 2022-08-2911

3 Overview

3.1 Relation to use cases

High-level requirements for the iFLEX Assistants, specified in D2.1 Use cases and requirements, are
documented in the form of use cases. Based on these use cases, component-specific requirements have been
engineered in the project. These requirements document the functional and non-functional needs that the
iFLEX Assistants developed on top of the iFLEX Framework aim to satisfy. The requirements are collected
and managed via the project’s issue and project tracking tool, Jira. There are currently 81 requirements
collected in Jira. Figure 1 illustrates a snapshot of the requirements collected in Jira.

Figure 1: Snapshot of the requirements in Jira.

3.2 Relation to the functional architecture of the iFLEX Framework

This deliverable describes the second phase implementation of the iFLEX Framework and thus covers the
whole architecture of the iFLEX Framework, as depicted in Figure 2. This deliverable is a summary of the
second phase implementation, and it should be used together with the D2.4, which provides a more detailed
description of the iFLEX Framework Architecture.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 8 of 24 Submission date: 2022-08-2911

Figure 2: Functional view of the iFLEX Framework.

The iFLEX Framework consists of seven (7) functional components as illustrated in Figure 2. The
implementation of these components is documented in this deliverable as follows:

• Section 4.1 introduces 2nd phase implementation of the Aggregator and market interface module.

• Section 4.2 describes the End-user interface module.

• Section 4.3 documents the Resource abstraction interface module.

• Section 4.4 introduces the Automated flexibility management module.

• Section 4.5 summarizes the Digital twin repository module.

• Section 4.6 describes the Weather service interface module.

• Section 4.7 summarizes the Security and privacy interface module.

3.3 Second phase focus

The focus in the second phase implementation of the iFLEX Framework is to provide tools and libraries for

developing the iFLEX Assistants for the Finnish, Greek and Slovenian pilots during the small-scale piloting

phase.

For household specific iFLEX Assistants, to be deployed in the Slovenian and Greek pilots, the required

functionality focuses on four aspects: First, a Resource abstraction interface to enable data collection and

control of flexible assets via relays, smart plugs, and Home Energy Management Systems (HEMS). Second,

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 9 of 24 Submission date: 2022-08-2911

the small-scale implementation of the End-User Interface, to collect feedback on the design from the second-

phase participants and allow co-creation of new functionalities with them. Third, the AFM and Digital Twin

repository modules to forecast the flexibility and execute automated DR actions. Fourth, the integration with

the aggregation platforms provided by ICOM and SCOM.

The second phase implementation of the iFLEX Assistant targeted for apartment buildings (to be deployed in

Finnish pilot) focuses on data collection and flexibility management experiments and testing. Additionally, the

goal of the small-scale pilot in Finland is to experiment and demonstrate a fully functional iFLEX Assistant in

the context of the apartment building flexibility management. The iFLEX Assistant includes all the functional

components documented in the revised common iFLEX Architecture (see D2.4).

To this end, the second phase focuses on implementing new components as well as, extending and integrating

baseline components in order to enable the aforementioned functionality to be deployed and tested in the

small-scale pilots. Moreover, the focus has been on implementing the Aggregator and market interface

modules to support the full use case to be demonstrated in the large-scale pilots during Phase 3 of the project.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 10 of 24 Submission date: 2022-08-2911

4 Implementation for phase two

The main functional components of the common iFLEX Framework and their interactions are depicted in Figure
3 and described in more detail in the following sub-sections. For each component, the functional description
and the description of implementation are provided.

Figure 3: Overview of the iFLEX Framework.

4.1 Aggregator and market interface

The Aggregator and Market Interface (A&M) component enables the participation of iFA end-users in flexibility
services via interfacing the iFA with Aggregation Platforms and energy markets’ APIs. The A&M Interface
component should support the following functionalities by the end of Phase 2:

• Communicate the flexibility potential of the iFA end-user to the Aggregation Platform;

• Receive flexibility signals from the Aggregation Platform and forward them to relevant iFLEX
components;

Particularly in case of explicit DR events, the A&M component should also be able to:

• Send the response to the flexibility signal back to the Aggregation Platform;

• Receive flexibility validation data from the RAI and send them to the Aggregation Platform;

• Evaluate the iFA end-user’s participation and communicate the result of the assessment to the
Aggregation Platform;

• Receive a DR report from the Aggregation Platform and expose its content to the iFA end-user.

Furthermore, it should be equipped with the ability to receive electricity network and retail tariffs, as well as
district heating tariffs, and expose them to relevant iFLEX components.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 11 of 24 Submission date: 2022-08-2911

Two versions of the A&M Interface component are developed: one for the residential iFA and one for the
building community. The residential A&M module will host various back-end services, which are built exploiting
the Django Web Framework (Django Software Foundation, 2022). Furthermore, a DR client – also known as
Virtual End Node (VEN) according to the OpenADR (OpenADR Alliance, 07-01-2013) terminology – will be
hosted in the A&M Interface component. This sub-component is responsible for the communications with the
DR server of the Aggregation Platform, and is built utilising the aiohttp (AIOHTTP, 2022) and OpenLEADR
(OpenLEADR, 2022) packages of Python. Moreover, cron jobs are used in order to schedule periodically
executed tasks, such as receiving the latest energy tariffs. All the above sub-components utilise a remote
PostgreSQL (PostgreSQL, 2022) database. In Figure 4, the technology stack of the A&M Interface module for
the residential iFA is demonstrated.

Figure 4: Technology stack of A&M’s Interface module for the residential iFA

More information on the features of the Aggregator and Market Interface can be found in the dedicated
deliverable, namely D4.5 Revised Market and Aggregation Interface Module. The same deliverable documents
also the Aggregation Platforms – as deployed per pilot – which are briefly described in the following sub-
section.

4.1.1 Aggregation Platforms

The iFA has to be interfaced with an Aggregation Platform in each pilot, so that its full set of functionalities can
be deployed and tested. Their interactions are shown in Figure 5. Therefore, the Aggregation Platforms should
support the following features:

• Receive the flexibility potential of iFA end-users from the A&M Interface;

• Send flexibility signals to iFA and receive the respective responses;

• Receive flexibility validation data from iFA;

• Send DR reports to iFA;

• Receive flexibility requests from third parties (e.g. a DER Aggregator, etc.), dispatch DR events based
on these requests, and report back to them with respect to the finally activated flexibility.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 12 of 24 Submission date: 2022-08-2911

Figure 5: Context view of the A&M Interface Module

The three solutions utilised in the iFLEX pilots are: ICOM’s Demand Response Management System (DRMS)
in Greece, SCOM’s DRMS in Slovenia, and Enerim’s Aggregation Platform in Finland. More details on the
features and employed technologies of each one of them are documented in the relevant deliverable D4.5
Revised Market and Aggregation Interface Module.

4.2 End-user interface

The User Interface (UI) component enables the interaction of the end users with their iFAs. Through the
developed applications, the users can both set their preferences on the operation of iFA and observe its impact
on the energy and flexibility management of their premises.

The users of the so far developed UIs are equipped with the following capabilities:

• Monitor energy flows, namely both electricity consumption and – when applicable – electricity
generation within premises (self-generation);

• Opt for the desired level of automation by activating or deactivating the automated mode, and by
setting up scheduled and flexible operation modes for their flexible assets – providing time and
operational constraints;

• Choose the objectives upon which the optimisation of the household’s energy use will be based;

• Pause push notifications – either temporarily or indefinitely;

• Receive DR event notifications, and accept or reject the iFLEX-proposed schedules for their flexible
assets;

• Receive DR reports and access DR participation history;

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 13 of 24 Submission date: 2022-08-2911

• Submit feedback on their comfort level;

Depending on applicability, the availability of the functionalities described above varies per pilot. Based on
system analysis and feedback received through co-creation activities in Phase 1, the development of the UI
component should support the following features by the end of Phase 2:

• Observe energy efficiency and sustainability metrics, and track the users’ personalised relevant goals
via customised alerts;

• Receive tailored advices, which aims at improving the household’s energy performance;

• View energy tariffs, as well as an estimation of future energy costs;

• View an estimation of the users’ savings thanks to the operation of iFA;

• View the operational schedules of assets online and offline;

• Submit feedback on users’ experience while using the app;

• Choose the system interface language between English and the users’ native language;

• Get various settings automatically filled in by an on-boarding wizard during the users’ first log-in on
the app, based on their answers to a brief questionnaire.

Two versions of the UI are developed; one is tailored to residential end-users (which is the case for the Greek
and Slovenian pilots), while the other is focused on building communities, which is the case for the Finnish
pilot of the project. This UI version is a web application written with JavaScript1, HTML2, SVG3, and CSS4. The
application contains a backend and a frontend. The backend is written with Node.js (Node.js documentation,
2022), and the backend stores user data into a MongoDB (MongoDB: The Developer Data Platform, 2022)
database. As regards the UI for the residential end-users, it is further divided into two instantiations: a
standalone mobile application, which is deployed in the Slovenian pilot, and a web application, which is
exposed through the pre-existing Heron’s mobile application in the Greek pilot. The UI backend server of both
applications for residential end-users is based on the Django web framework and a PostgreSQL database is
exploited to achieve data persistence. The frontend of the web application – deployed in Greece – utilises
HTML, CSS, and various JavaScript libraries, such as React (React: A Javascript library for building user
interfaces, 2022). On the other hand, the native mobile application – deployed in Slovenia – is built using the
React Native framework (React Native, 2022).

More information on the functionalities, employed technologies, and design of the UI components are provided
in D3.5 Revised Natural User Interfaces. Indicatively, Figure 6 shows the “Energy” screen of the mobile app
for residential end-users in Slovenia, while Figure 7 presents the front page of the UI for the building
community.

1 About JavaScript: https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
2 What is HTML?: https://www.w3schools.com/html/html_intro.asp
3 What is SVG?: https://www.w3schools.com/graphics/svg_intro.asp
4 What is CSS?: https://www.w3schools.com/css/css_intro.asp

https://developer.mozilla.org/en-US/docs/Web/JavaScript/About_JavaScript
https://www.w3schools.com/html/html_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/css/css_intro.asp

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 14 of 24 Submission date: 2022-08-2911

Figure 6: Mobile app for residential end users – “Energy” screen.

Figure 7: Building Community UI – The Front Page: Building Electricity and District Heating.

4.3 Resource abstraction interface

The Resource abstraction interface (RAI) component provides interfaces for home energy management
systems (HEMS), building energy management systems (BEMS), smart meters, and other external
metering/sensor infrastructure. That is, the role of the RAI is to provide iFLEX Assistant with means to monitor
and control energy consumption, comfort, and other relevant aspects in the consumer/prosumer premises.

The current RAI implementation consists of two interface stacks. The first stack is implemented on top of an
oBIX store in the Finnish pilot. The second stack is being developed on the top of HERON’s southbound HEMS
interface in the Greek pilot and ECE/Amibit southbound HEMS interface in the Slovenian pilot.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 15 of 24 Submission date: 2022-08-2911

The oBIX Store module provides means to access data and control resources provided by BEMS via standard
Open Building Information Xchange format5. It is based on existing baseline implementation hosted by VTT.
The oBIX Store is implemented with Java. The iFLEX RAI interface for buildings has been implemented as a
programmable client in Python programming language. The backend server is implemented in Javascript using
Node.js on top of MongoDB. The backend server wraps the oBIX Store functionality and exports it through the
Node.js in a form of REST API.

The Greek and Slovenian pilot share the same RAI implementation. In the Greek pilot the RAI is implemented
on top of HERON’s HEMS API. The HERON’s API interface provides means both for real-time monitoring of
consumer loads and for remote control of energy assets at the consumer premises. In particular, HERON’s
AMI provides the following functionality: 1) access to Smart Meter and IoT data (i.e. temperature and
occupancy), 2) access to user schedules provided through manual operation, and 3) methods for controlling
assets in the end-user premises. Currently, the RAI API wraps only access to the Smart Metering data,
whereas work on other interfaces is in progress. Additionally, the RAI API provides access to Weather data
through OpenWeatherMap service for three piloting locations in Greece.

In the Slovenian pilot the RAI is implemented on top of a southbound ECE/Amibit HEMS cloud interface. The
southbound interface is wrapped with the RAI backend implementation implemented in Python, Tornado web
framework6 and a backend database MongoDB7. The RAI interface allows access to household devices
information, close to real time smart metering information, sensors data and controls of household devices
when available. The RAI is augmented with weather data for the Celje region and tariff data for pilot users.

The RAI used in the Greek and Slovenian pilots provides common interface to access the measurement and
sensor data, as well controls of the devices. A feature of the interface is an aggregation framework for the
data, so that the data is aligned at multiple time intervals (5 min, 15 min, 60 min, day, week, month). The RAI
is integrated tightly with the security and privacy interfaces as presented in Section 4.7.

The second phase design and implementation of the RAI component is described in more detail in D4.2
Revised Resource abstraction interface module.

4.4 Automated flexibility management

The Automated flexibility management (AFM) component provides services for implementing DR control and
optimization operations. This is achieved by implementing model predictive control (MPC) with the models
provided by the Digital Twin Repository. More concretely, it provides the following functionality:

• Baseline forecasting: AFM component requests forecast from digital twin repository to form a
baseline load forecast. Then it publishes the baseline forecast via MQTT.

• Flexibility estimation: AFM component predicts minimum and maximum loads utilizing models from
the digital twin repository together with internal optimization module for different timeslots in order to
evaluate the flexibility of the prosumer.

• DR control and optimization: AFM component utilizes the digital twin models to predict the demand
response for different control options and iterates through them in order to find optimal control strategy.
Chosen controls are sent to the Resource Abstraction Interface via MQTT.

An UML class diagram of the second phase AFM-prototype is depicted in Figure 8.

5 http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.html
6 See Tornado web pages for details: https://www.tornadoweb.org/en/stable/
7 See MongoDB wep pages for details: https://www.mongodb.com

http://docs.oasis-open.org/obix/obix/v1.1/csprd01/obix-v1.1-csprd01.html

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 16 of 24 Submission date: 2022-08-2911

Figure 8: UML class diagram for the Automated Flexibility Manager.

The architecture consists of two main entities represented by the EnergyPlanner and Resource classes.

The Energy Planner entity is similar to the Customer Energy Manager in the EN 50491-12 standard family.
There is a single Energy Planner component for each AFM. It is responsible for: 1) aggregating and optimizing
flexible assets within the consumer premises, 2) delivering baseline and flexibility forecast to Aggregation and
Market interface, 3) reacting to price, incentive, and explicit control signals to maximize consumer benefits
while meeting their preferences, and 4) informing each Controller about the flexible asset specific load profiles
the asset should follow. The Energy Planner utilizes MPC based approach for optimizing the energy and
flexibility management within consumer premises.

There is a single Resource for each flexible asset (or logical group of flexible assets) within the consumer
premises. Each controller is responsible for following the individual load plan provided by the Energy Planner.
In the current implementation, the whole consumer (i.e., people, building, flexible assets, local production) is
represented as a single resource. The Resource class implements the controllers for each flexible asset. It
also provides the EnerygPlanner with baseline and flexibility forecasts by acting as an interface to the Digital
Twin Repository. The implementation of this class is consumer specific and only an abstract class (defining
the interface) is implemented as part of the generic AFM library.

In addition to the EnergyPlanner and Resource classes, the other main classes of the implementation include:
The AFM class represents the whole Automated Flexibility Manager entity. To setup the AFM for a new
consumer an instance of this class is created. The MqttInterface class implements the MQTT interface of the
AFM module. The OperationTimer class represents timers that are used to synchronize the operation of the
Energy Planner.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 17 of 24 Submission date: 2022-08-2911

AFM module is written in Python programming language. Data is primarily stored in DataFrame format form
Pandas (McKinney, 2010) library. The MPC optimization, as well as some other data manipulation, is
implemented using NumPy (Harris et al., 2020). Communication to other interfaces is done via MQTT protocol,
a Python client is implemented by Eclipse Paho project8.

The revised prototype of the AFM component is described in more detail in D3.8 Revised Automated flexibility
management module.

4.5 Digital twin repository

The main purpose of the Digital twin repository is to:

• Estimate the impact of a consumer (i.e. metering point) for flexibility management.

• Provide optimal and consumer-centric flexibility management with model-based planning and control.

To this end, the Digital twin repository module consists of models for predicting and simulating consumer loads,
flexibility and potential response to flexibility signals. These models are utilized by the Automated Flexibility
Management module to estimate the baseline, flexibility and response of the consumers. The models are
implemented with combination of machine learning and physics-based modelling. The current version of the
repository includes digital twins for an apartment building (the Finnish pilot) and residential houses (Slovenian
and Greek pilots).

The Digital Twin (DT) for apartment buildings consists of four main models as illustrated in Figure 9. It contains
two machine-learning models for predicting the electricity and district heating baseline energy consumption, a
physics-inspired heating system model with several parameters learned from data, and a simple physics-based
model for predicting the indoor temperature during the DR events. The revised version of the DT utilizes
artificial neural networks for forecasting the baseloads for electricity and district heating. Thermal flexibility
models include a room temperature model based on Newton’s law of cooling and simple energy consumption
models for space heating provided by heat pumps and district heating. The idea in the heating system model
is to modify the baseline prediction provided by ML models according to the law of energy conversion. The full
heating system model as well as the other models are presented in more detail in D3.2 Revised Hybrid
Modelling Module.

8 https://www.eclipse.org/paho/index.php?page=clients/python/index.php

https://www.eclipse.org/paho/index.php?page=clients/python/index.php

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 18 of 24 Submission date: 2022-08-2911

Figure 9: Conceptual representation of the interdependencies among the Digital Twin (measured parameters (green),
non-measured parameters (blue)) and the residents of the building community.

The digital twin of a household, as illustrated in Figure 10, is based on four models: the thermal house model,
the electrical model, the flexibility model, and the mobility model. The first basis of the model is explained and
presented. The data used for modelling is displayed. This model consists partly of a neural network and partly
of a gradient enhancement solution.

Digital twin of the building community

Energy demand model

Electricity
baseline
model

DH
baseline
model

Residents

Electricity consumption
District heating
consumption Heat

pump
Ventilation

Domestic
hot water

Heating

Elevators

Common
Sauna

Lighting

Indoor
temperature

model
Heating

system model

Thermal
comfort

Models

ModelsModels
Models

Influence

Influence

Influence

Constrain for
flexibility

Models

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 19 of 24 Submission date: 2022-08-2911

Figure 10: Household modelling (models in grey, measured parameters in green, constraints in orange, non-measured
parameters in blue). Full arrows represent phase one focus.

The digital twin repository module is implemented with Python programming language. All ANN models in the
repository are implemented with Tensorflow 2.0 (Abadi et al., 2016) on top of its Keras API (Chollet, 2018).
Physics-based models are mainly implemented in NumPy (Harris et al., 2020). The predictive data analysis
tool scikit-learn (Pedregosa et al., 2011) is used to determine some parameters of physical models and data
aggregation. Pandas (McKinney, 2010) is used for analysis and manipulation of time series.

The revised version of the Digital twin repository module is presented in more detail in D3.2 Initial Hybrid-
modelling module.

4.6 Weather service interface

As the name implies, the role of the Weather service interface module is to provide data about weather
forecasts to the iFLEX Framework. In the first phase, this module was utilized inside the iFLEX Assistants to
provide the digital twin repository component with weather forecast data, which were required for
predicting the response of weather-related consumption units such as the building's heating and cooling
system.

Providers of the weather forecast services are typically country-specific. Because of this, the weather service
interface module consists of individual modules for different countries. In phase one, the module contains
interfaces for accessing weather forecasts provided by the Finnish Meteorological Institute (FMI). Additionally,
interfaces for accessing weather forecasts in Slovenia are under development. The FMI provides an open API
to access Finland’s weather forecast 48 hours in advance. The data is shared according to the standards of
the Open Geospatial Alliance9. The module providing access to weather forecast data in Finland is integrated
to the RAI component via a common database. Figure 11 illustrates the setup for integrating FMI data into the
iFLEX Framework. The interface for fetching data into the RAI database is implemented in Java programming
language. A client for accessing the weather forecast data via the oBIX RESTful API is implemented in Python
to enable easy integration with the Digital twin repository module.

9https://www.ogc.org/standards

https://www.ogc.org/standards

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 20 of 24 Submission date: 2022-08-2911

Figure 11: Weather forecast interface module integrated into the Resource abstraction interface component.

In Slovenia, the weather data is integrated as a combination of weather data ingestion service, feeding the
Prosumer Cloud Service, and the REST API providing access to forecasted and realized weather data. The
ingestion service is implemented in Python, current implementation is further described in deliverable D4.2
Revised Resource abstraction interface module. The weather data provides information on temperature,
radiation and precipitation on 1 h basis. The forecast is available for 7 days in advance for 1 h granularity. The
weather data originates from the Slovenian Environment Agency (ARSO)10 and is provided by ELE.

4.7 Security and privacy interface

The Security and privacy interface provides a number of services and mechanisms needed for implementing
the security and privacy requirements as defined in the deliverable D2.1. The following services are currently
implemented:

• Enrolment module: the service provides a web portal for end-user registration and personal account
management. During the registration, the certificates for the end user can be dynamically generated
and provided. The service allows for utilizing of various invitation methods for registration, like magic
numbers11 provided in the electricity bill, etc. The service provides means to register an additional
device under the same account with same privileges in a single trust management setup. The feature
could be used for providing access control certificates for mobile devices to be able to access RAI
REST API. The module takes care to pseudonymise incoming smart metering data in Slovenian pilot
and provides user management interfaces for pilot host management of the pilot users data details
such as HEMS ids, tariffs, etc.

• Trust management module: the module provides a Certification Agency for issuing digital certificates
for services, service managers and end users. According to the application security policies, the
certification can be issued according to the role that the entity (either a service or user) has in the
system. Multiple trust management setups could be prepared, for example one per pilot. The module
is based on OpenSSL12 and implemented with a build automation software Make13 and parts in a
shellscript. An additional component is a component that allows issuing dynamic certificates based
on authenticated and authorized access from other system components, like a privacy-compliant,
end-user engagement service. The module has been extended with Self Sovereign Identity (SSI)
management implementation. Both X.509 and SSI implementation provide similar functionality for
basic services. The SSI implementation utilizes intrinsic properties of the approach and provides the
functionality in more user-oriented approach. Future requirements like ability to integrate additional

10 See Slovenian Environmental Agency home page for more details: https://www.arso.gov.si/en/
11 https://en.wikipedia.org/wiki/Magic_number_(programming)
12 See OpenSSL web page for details: https://www.openssl.org/
13 See Gnu Make Wikipage for details: https://en.wikipedia.org/wiki/Make_(software)

https://en.wikipedia.org/wiki/Magic_number_(programming)

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 21 of 24 Submission date: 2022-08-2911

outside entities and fain-grain delegation can be supported by the SSI out of the box. The SSI
implementation is provided in cloud, in multitenant approach.

• Security and privacy interface: the interface is a collection of a number of interconnected security
services, specified below:

o Communication security: All the communication among the security components, system
components and resources should be secured. In the baseline implementation, the
communication was in general protected by Transport Layer Security -TLS protocol.14 The
TLS protocol provides data origin integrity and authenticity as well as confidentiality service
of information exchanged in the communication.15 The baseline approach is used in
communication with the Prosumer Cloud Service and presented security components. The
challenge of secure communication with the Resource abstraction interface and beyond,
towards the devices and actuators and the End-user interface is a work in progress and needs
to be further integrated in the final system setup.

o Authorization interface: The interface provides an ability to manage devices ids in household
access control security policies. The interface is used to add or remove End User Interface
device id to the household security policy. The policy is used while providing access control
decisions.

o Access control service: The Access Control Service (ACS) uses the digital certificates issued
by the trust management module and internal security policies to provide access control
decisions regarding access of system entities to the Prosumer Cloud Service REST API or
access to messaging service messages, for example MQTT. The service is performing well
to support large number of requests to the REST API or messaging communication channels.
The policies can be fain grain and can control access to REST API HTTP methods (GET,
PUT, PULL, etc.) or read and/or write access to MQTT topics. The policies access to
resources can be either role- or identity-based. Through specific procedures, the policies
could be updated to manage dynamically issued digital certificates.

o Security interceptors: The interceptors are services or programmable features that enforce
authorisation decisions. An MQTT interceptor is a service running as a plugin on a Mosquitto
MQTT broker. The service intercepts each topic’s read or write, authenticates the connection,
invokes the authorization engine with information who would like to access the resource
(topic) and in what manner (read, write) and enforces authorization decision when provided.
The programmable solutions are embedded into the Python Tornado implementation
environment and enable controlling access to each RAI API REST web server route. In the
same manner the other services like Digital Twin Repository, Automated Flexibility
Management, etc. will be mannered.

14 See TLS Wikipages for details: https://en.wikipedia.org/wiki/Transport_Layer_Security
15 All security terminology used in the document is aligned with the RFC4949 - Internet Security Glossary, Version 2, see the glossary

online: https://datatracker.ietf.org/doc/html/rfc4949

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 22 of 24 Submission date: 2022-08-2911

5 Conclusion

This is a demonstrator-type deliverable that documents the second phase implementation of the iFLEX
Framework. The iFLEX Framework presented in this deliverable consists of the components developed in the
technical Work Packages of the project. The components of the framework and their main responsibilities
include:

• Aggregator and market interface: Enables the interaction between the iFLEX Assistant and the
market.

• End-user interface: Enables the consumers/prosumers to interact with the iFLEX Assistant.

• Resource abstraction interface: Provides iFLEX Assistant with means to monitor and control energy
consumption, comfort, and other relevant aspects in the consumer/prosumer premises.

• Automated flexibility management: Provides services for implementing DR control and optimization
operations.

• Digital twin repository: Estimates the impact of a consumer for flexibility management and provides
optimal and consumer-centric flexibility management.

• Weather service: Provides country-specific data about weather forecasts.

• Security and privacy interface: Provides trust and security among iFLEX subsystem and services,
users and data.

This document provides a high-level description of the whole iFLEX Framework. More details for each
functional component of the framework are provided in component specific deliverables referenced throughout
this deliverable.

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 23 of 24 Submission date: 2022-08-2911

6 List of figures and tables

6.1 Figures

Figure 1: Snapshot of the requirements in Jira. .. 7
Figure 2: Functional view of the iFLEX Framework. .. 8
Figure 3: Overview of the iFLEX Framework. ..10
Figure 4: Technology stack of A&M’s Interface module for the residential iFA ..11
Figure 5: Context view of the A&M Interface Module ...12
Figure 6: Mobile app for residential end users – “Energy” screen. ..14
Figure 7: Building Community UI – The Front Page: Building Electricity and District Heating........................14
Figure 8: UML class diagram for the Automated Flexibility Manager. ...16
Figure 9: Conceptual representation of the interdependencies among the Digital Twin, measured parameters
(green), non-measured parameters (blue) and the residents of the building community.18
Figure 10: Household modelling, models in grey, measured parameters in green, constrains in orange, non-
measured parameters in blue. Full arrows represent phase one focus. ..19
Figure 11: Weather forecast interface module integrated into the Resource abstraction interface component.
 ...20

 D6.3 Refined Common iFLEX Framework

Document version: 1.0 Page 24 of 24 Submission date: 2022-08-2911

7 References

(AIOHTTP, 2022) AIOHTTP. (2022, September 21). Welcome to AIOHTTP. Retrieved June 21st,
2022, from https://docs.aiohttp.org/en/stable/

(Chollet, 2018) Chollet, F. (2018). Deep Learning with Python and Keras. MITP-Verlags GmbH &
Co. KG.

(Django Software Foundation, 2022)

 Django Software Foundation. (2022, September 21). The Django project. Retrieved
June 21st, 2022, from https://www.djangoproject.com/

(EC, 2007) European Commission (2007). A lead market initiative for Europe. Brussels.
COM(2007) 860 final.

(Harris et al., 2020) Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., … Oliphant, T. E. (2020). Array programming with NumPy. Nature.
https://doi.org/10.1038/s41586-020-2649-2

(McKinney, 2010) McKinney, W. (2010). Data Structures for Statistical Computing in Python. In
Proceedings of the 9th Python in Science Conference.

(MongoDB: The Developer Data Platform, 2022)

 MongoDB: The Developer Data Platform. (2022, September 21). Retrieved July
19th, 2022, from https://www.mongodb.com/

(Node.js documentation, 2022)

 Node.js documentation. (2022, September 21). Retrieved July 19th, 2022, from
https://nodejs.org/en/docs/

(OpenADR Alliance, 07-01-2013)

 OpenADR Alliance. (07-01-2013). OpenADR 2.0. Profile Specification - B Profile
v1.0, (Final Specification).

(OpenLEADR, 2022) OpenLEADR. (2022, September 21). Retrieved May 17th, 2021, from
https://openleadr.org/

(Pedregosa et al., 2011) Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., …
Duchesnay, É. (2011). Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research.

(PostgreSQL, 2022) PostgreSQL. (2022, September 21). PostgreSQL: The World's Most Advanced Open
Source Relational Database. Retrieved June 21st, 2022, from
https://www.postgresql.org/

(React: A Javascript library for building user interfaces, 2022)

 React: A Javascript library for building user interfaces. (2022, September 21).
Retrieved July 19th, 2022, from https://reactjs.org/

(React Native, 2022) React Native. (2022, September 21). Retrieved July 19th, 2022, from
https://reactnative.dev/

https://doi.org/10.1038/s41586-020-2649-2
https://www.postgresql.org/

